

1

Lecture 03

Design of Doubly Reinforced Beam in Flexure

By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar

drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com

Prof. Dr. Qaisar Ali

CE 320: Reinforced Concrete Design-I

Lecture Contents

- Background
- Mechanics of Doubly Reinforced Beam
- Design Procedure
- Design of Doubly Reinforced Beam in flexure (Example)
- References
- Appendix

Learning Outcomes

- At the end of this lecture, students will be able to;
 - > *Define* a doubly reinforced beam.
 - > *Understand* the mechanics of a doubly reinforced beam.
 - > Analyze and Design Doubly reinforced beam in flexure.

Background

• Introduction

• As we know that flexural capacity of a beam is given by

$$\emptyset M_n = \emptyset A_s f_y \left(d - \frac{a}{2} \right)$$

Taking $\emptyset M_n = M_u$

$$\emptyset A_s f_y \left(d - \frac{a}{2} \right) = M_u$$

- This equation clearly shows that for a beam with specified material properties, we must increase either the area of steel A_s or the effective depth, *d* to meet the given demand moment M_u .
- However, if the cross-sectional dimensions of beam are restricted due to architectural or some other considerations, then we are only left with increasing Area of steel.

Background

• Introduction

- Unfortunately, we cannot increase the area of steel beyond the maximum reinforcement limit.
- If A_s exceeds A_{smax} , the strain in concrete will reach a value of 0.003 before strain in the tension steel reaches $\epsilon_{ty} + 0.003$, thus violating the ACI Code recommendation for ensuring ductility.

Background

• Introduction

- However, if we strengthen the compression zone by either increasing f_c' or placing some additional reinforcement, the crushing of concrete will be delayed and the load at which strain reaches 0.003 will be increased.
- When this happens, the range of A_{smax} is extended and A_s on the tension side can be raised without compromising ductility, which will also increase flexural capacity of the beam.
- Practically this can be achieved simply by placing some additional steel on both faces (tension and compression) of the beam.
- Such type of beam with both tension and compression reinforcement is known as Doubly reinforced beam.

• Determination of flexural capacity

The total nominal flexural capacity $M_{n(DR)}$ is given by; $M_{n(DR)} = M_{n1} + M_{n2}$

 M_{n1} = Maximum Resisting Moment provided by A_{smax}

 M_{n2} = Maximum Resisting Moment provided by the Compression Steel

C_c = Compression force due to concrete in compression region.

 C_s = Compression force in steel in compression region needed to balance the tension force in addition to the tension force provided by $A_{smax (SR)}$.

Determination of flexural capacity \bigcirc

Design flexural capacity is given by

 $\phi M_{n(DR)} = \phi M_{n1} + \phi M_{n2}$

Here,

$$\begin{split} & \emptyset M_{n1} = \emptyset A_{s,max(SR)} \times f_{y} \left(d - \frac{a_{max}}{2} \right) \rightarrow lets \ call \ it \ \emptyset M_{n,max(SR)} \\ & \text{and} \\ & \emptyset M_{n2} = \emptyset A_{s'} \left(f_{s'} \right) \times (d - d') \\ & \text{So,} \\ & \emptyset M_{n(DR)} = \emptyset M_{n,max(SR)} + \emptyset A_{s'} f_{s'} (d - d') \\ & \text{Note:} \\ & \text{For compression steel, we used } f_{s'} \\ & \text{instead of } f_{y}. \\ & \text{It is because we do not know} \\ & \text{whether the compression steel will} \end{split}$$

yield or not.

not know

• Determination of flexural capacity

For no failure, $\emptyset M_{n(DR)} \ge M_u$

Taking $M_u = \emptyset M_{n(DR)}$

 $\overline{M_u} = \emptyset M_{n,max(SR)} + \emptyset A_s' f_s' (d - d')$

Solving for A_s' gives

$$A_{s}' = \frac{M_{u} - \emptyset M_{n,max(SR)}}{\emptyset f_{s}'(d - d')}$$

Taking
$$M_u - \emptyset M_{n,max(SR)} = M_u$$

$$A_{s'} = \frac{M_{u'}}{\emptyset f_{s'}(d - d')} \quad -\dots \quad (3.1)$$

 M_u' is the extra moment to be carried by compression steel

What are the unknowns in eq. (3.1)?

CE 320: Reinforced Concrete Design-I

- Determination of flexural capacity
 - **Calculation of** $\emptyset M_{n,max(SR)}$

Putting value of $A_{s,max(SR)}$ and a_{max} and simplifying gives

For detailed derivation of eq.(3.2a) and (3.2b), refer to the Appendix.

- Determination of flexural capacity
 - **Computation of** f_s'

 $f_{s}' = E_{s}\epsilon_{s}'$

 $\epsilon_{s}{'}$ can be calculated by similarity of triangles From ΔPQR an ΔSTR , we have

$$\frac{ST}{SR} = \frac{PQ}{PR}$$

Since

 $ST = \epsilon_s', SR = c - d', PQ = \epsilon_u \text{ and } PR = c$

Therefore,

$$\frac{\epsilon'_{s}}{c-d'} = \frac{\epsilon_{u}}{c} \qquad \Rightarrow \ \epsilon_{s'} = \frac{(c-d')\epsilon_{u}}{c} \quad ---- (3.3)$$

What are the unknowns here?

- Determination of flexural capacity
 - **Computation of** f_s'

Again, from $\triangle PQR$ and $\triangle VUR$, we have $\frac{PR}{PQ} = \frac{VR}{VU} \implies \frac{c}{\epsilon_{\mu}} = \frac{d-c}{\epsilon_{s}}$ $c = \left(\frac{\epsilon_u}{\epsilon_u + \epsilon_s}\right) d$ $c = \left(\frac{0.003}{0.003 + [\epsilon_{vt} + 0.003]}\right) d$ Which on solving gives; $c = 0.4065d (f_v = 40ksi) \&$ $c = 0.3718d(f_v = 60ksi)$

$$\epsilon_u = 0.003$$
 (ACI 318 – 19, R21.2.2)
and
 $\epsilon_s = \epsilon_{yt} + 0.003$ (ACI 318-19 Table 21.2.2)

- Determination of flexural capacity
 - **Computation of** f_s'
 - For Grade 40 steel: Putting c = 0.4065d in eq. (3.3), we get

 $\epsilon_{s'} = \frac{(c-d')\epsilon_u}{c} = \frac{(0.4065d-d') \times 0.003}{0.4065d} = 0.003 - 0.00738d'/d$

 $f_s' = E_s \epsilon_s' = 29000(0.003 - 0.00738d'/d)$

$$f_{s,40}' = 87 - 214 \frac{d'}{d} \le 40 ksi$$
 ----- (3.4a)

• For Grade 60 steel: Similarly, for c = 0.3718d $f_s' = E_s \epsilon_s' = 29000(0.003 - 0.008069d'/d)$

$$f_{s,60}' = 87 - 234 \frac{d'}{d} \le 60 ksi$$
 ----- (3.4b)

Important Note:

- Depending upon the ratio of d'/d, the steel in compression zone may or may not yields.
- It should be noted that yielding of compression steel is NOT necessary like that of tension steel.

Determination of Maximum Reinforcement Limit

 $A_{s,max(DR)}$ is the maximum reinforcement limit for doubly reinforced beam

Determination of Maximum Reinforcement Limit

$$\frac{0.85f'_{c}\beta_{1}(cb_{w})}{f_{y}} = A_{s,max(SR)}$$
$$A_{s,max(DR)} = A_{s,max(SR)} + \frac{f_{s}'}{f_{y}}(A_{s}')_{pvd}$$

On putting value of $A_{s,max(SR)}$, we get

 $(A_s')_{pvd}$ is the steel area provided in the compression zone of the beam.

and

$$A_{s,max(DR),60} = \frac{f_c'}{223} b_w d + \frac{f_s'}{f_y} (A_s')_{pvd} \quad ---- \quad (3.5b)$$

CE 320: Reinforced Concrete Design-I

Design Procedure

- Summary of design steps for a doubly reinforced beam
 - Step No.1,2 and 3: Sizes, Loads and Analysis
 - Step No.4: Checking the behavior of section (whether SR or DR)
 - Step No.5: Determination of Compression steel area
 - Step No.6: Determination of Tension steel area
 - Step No.7: Detailing of reinforcement
 - Step No.8: Applying maximum reinforcement check
 - Step No.9: Drafting
 - Step No.10: Check for yielding of compression steel (optional)
 - Step No.11: Check flexural capacity of section (optional)

Design of Doubly Reinforced Beam in Flexure

• Example 3.1

• Design the given reinforced concrete beam for an ultimate flexural demand of 4590 in-kip. The beam's cross-sectional dimensions are restricted. Material strengths to be used are also limited as $f'_c = 3ksi$ and $f_y = 40ksi$.

CE 320: Reinforced Concrete Design-I

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.1: Checking behavior of section

Calculate area of steel based on singly reinforced beam mechanics

$$a = d - \sqrt{d^2 - \frac{2.614M_u}{f_c'b_w}} = 21.5 - \sqrt{21.5^2 - \frac{2.614 \times 4590}{3 \times 12}} = 10.14"$$

$$A_{s} = \frac{M_{u}}{0.9f_{y}\left(d - \frac{a}{2}\right)} = \frac{4590}{0.9 \times 40\left(21.5 - \frac{10.14}{2}\right)} = 7.76in^{2}$$

Now,

$$A_{s,max(SR),40} = \frac{f_c' b_w d}{136} = \frac{3 \times 12 \times 21.5}{136} = 5.69in^2$$

Since $A_s > A_{s,max(SR)}$, the beam cannot be designed as singly reinforced. Now designing the beam as doubly reinforced.

Prof. Dr. Qaisar Ali

CE 320: Reinforced Concrete Design-I

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.2: Determination of Compression steel area

$$M_{u}' = M_{u} - \emptyset M_{n,max(SR),40} = 4590 - 0.219 f_{c}' b_{w} d^{2}$$

 $M_{u}' = 4590 - 3644.38 = 945.62$ in. kip

Assuming d' = 2.5"

$$f'_{s,40} = 87 - 214 \frac{d'}{d} = 87 - 214 \frac{2.5}{21.5} = 62.12 \text{ksi} > f_y$$

Use $f'_{s,40} = f_y = 40ksi$

Now,

$$A'_{s} = \frac{M_{u}'}{\emptyset f'_{s}(d-d')} = \frac{945.62}{0.9 \times 40(21.5 - 2.5)} = 1.38in^{2}$$

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.3: Determination of Tension steel area

Tension steel area is the sum of maximum singly reinforcement and compression reinforcement.

$$A_{st} = A_{s,max(SR)} + A_{s}'$$

Here,

$$A_{s,max(SR)} = \frac{f_c' b_w d}{136} = 5.69in^2$$

So, by substituting values, we get

$$A_{st} = 5.69 + 1.38$$

 $A_{st} = 7.07 i n^2$

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.4: Detailing of reinforcement

Using #8 bar, with bar area $A_b = 0.79in^2$

No. of bars to be provided on tension side = $\frac{A_{st}}{A_b} = \frac{7.07}{0.79} = 8.95 \approx 9$

No. of bars to be provided on compression side $=\frac{A_s'}{A_b}=\frac{1.38}{0.79}=1.8\approx 2$

Hence, provide

- 9 #8 (in 3 layers) on tension side and
- 2 #8 (in 1 layer) on compression side.

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.5: Applying maximum reinforcement check

Using eq. (3.5a)

$$A_{s,max(DR),40} = \frac{f'_c}{136} b_w d + \frac{f'_s}{f_y} (A_s')_{pvd}$$
$$A_{s,max(DR),40} = 5.69 + 1(2 \times 0.79) = 7.27 in^2$$

Provided area of tension steel is,

 $A_{st,pvd} = 9(0.79) = 7.11in^2$

Since $A_{st,pvd} < A_{s,max(DR),40} \rightarrow OK!$

$$f_s' = f_y$$

• $(A_s')_{pvd}$ is area of provided compression steel.

Design of Doubly Reinforced Beam in Flexure

• Solution

- Step No.5: Applying maximum reinforcement check
 - Although providing 9 bars in three layers is adequate, it is preferable to arrange as many bars as possible on the bottom most side to increase the effective depth "d".
 - Therefore, providing 10 #8 bars in three layers (4+4+2), we have

 $A_{st,pvd} = 10(0.79) = 7.9in^2 > A_{s,max(DR),40} \rightarrow Not OK!$

 The range of A_{s,max(DR),40} can be extended by simply providing a few extra bars in the compression zone only. Therefore, providing one extra #8 bar, we get

 $A_{s,max(DR),40} = 5.69 + (3 \times 0.79) = 8.06in^2 > A_{st,pvd} \rightarrow OK!$

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.6: Drafting

Provide 10 #8 (in 3 layers) on tension side and 3 #8 (in 1 layer) on compression side of beam.

Design of Doubly Reinforced Beam in Flexure

• Solution

- Step No.7: Check for yielding of compression steel (optional)
 - Calculate actual d and d' as follows

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3}{A_1 + A_2 + A_3}$$

$$y_1 = 1.5 + \frac{3}{8} + \frac{8}{16} = 2.375"$$

$$y_2 = y_1 + \frac{8}{16} + 1.5 + \frac{8}{16} = 4.875$$

$$y_3 = y_2 + \frac{8}{16} + 1.5 + \frac{8}{16} = 7.375$$
"

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.7: Check for yielding of compression steel (optional)

 $A_1 = A_2 = 4(0.79) = 3.16in^2$ and $A_3 = 2(0.79) = 1.58in^2$

Determine \bar{y} as follows

$$\bar{y} = \frac{3.16(2.375) + 3.16(4.875) + 1.58(7.375)}{3.16 + 3.16 + 1.58} = 4.375"$$

$$d = h - \bar{y} = 24 - 4.375 = 19.625'$$

$$d' = 1.5 + \frac{3}{8} + \frac{8}{16} = 2.375"$$

Now

$$f'_{s,40} = 87 - 214 \frac{2.375}{19.625} = 61.1 ksi > 40 ksi \rightarrow \text{Compression steel yields!}$$

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.8: Check flexural capacity of section (optional)

Flexural capacity of doubly reinforced beam can be calculated as;

$$\emptyset M_{n(DR)} = \emptyset \left[C_c \left(d - \frac{a}{2} \right) + C_s (d - d') \right]$$

Here,

$$C_c = 0.85 f'_c b_w a$$
 and $C_s = A'_s f'_s$

For doubly reinforced beam,

a is given by

$$a = \frac{A_{st}f_y - A_s'f_s'}{0.85f_c'b_w}$$

$$a = \frac{7.9 \times 40 - 2.37 \times 40}{0.85 \times 3 \times 12} = 7.23in$$

Design of Doubly Reinforced Beam in Flexure

• Solution

• Step No.8: Check flexural capacity of section (optional)

Calculating compressive forces offered by concrete and compression steel

 $C_c = 0.85 f'_c b_w a = 0.85 \times 3 \times 12 \times 7.23 = 221.238 kip$ and

 $C_s = A_s' f_s' = 2.37(40) = 94.8 kip$

Now,

$$\emptyset M_{n(DR)} = 0.9 \left[221.238 \left(19.625 - \frac{7.23}{2} \right) + 94.8(19.625 - 2.375) \right]$$

 $\emptyset M_{n(DR)} = 4659.59 \text{ in. } k > M_u \to OK!$

Design of Doubly Reinforced Beam in Flexure

• Example 3.2 (Class Activity)

A simply supported beam is subjected to a factored flexural demand of 3130 in.kip. The beam's cross-sectional dimensions are restricted. The material strengths are also limited as $f'_c = 3ksi$ and $f_v = 60 ksi$

- a) State whether is it possible to design the beam as singly reinforced?
- b) Design the section using #8 bar, and calculate the flexural capacity

References

- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)

Appendix

• Calculation of $\emptyset M_{n,max(SR)}$ for Grade 40 and Grade 60 steel

As we know that

$$\emptyset M_{n,max(SR)} = 0.9A_{s,max(SR)}f_y\left(d - \frac{a_{max}}{2}\right) \dots (A)$$

□ For Grade 40 steel:

$$A_{s,max} = \frac{f_c' b_w d}{136} \quad and$$

$$a_{max} = \frac{A_{s,max}f_y}{0.85f'_c b_w} = \frac{f'_c b_w d/136 \times 40}{0.85f'_c b_w} = \frac{40}{136 \times 0.85} d$$

Putting these values in equation (A), we get

$$\emptyset M_{n,max(SR),40} = 0.9 \frac{f'_c b_w d}{136} \times 40 \left(d - \frac{1}{2} \left[\frac{40}{136 \times 0.85} d \right] \right)$$

Appendix

- Calculation of $\emptyset M_{n,max(SR)}$ for Grade 40 and Grade 60 steel
 - □ For Grade 40 steel:

$$\begin{split} & \emptyset M_{n,max(SR),40} = \frac{0.9 \times 40}{136} f'_c b_w d^2 - \frac{0.9 \times 40}{136} \times \frac{1}{2} \left[\frac{40}{136 \times 0.85} \right] f'_c b_w d^2 \\ & \emptyset M_{n,max(SR),40} = \frac{0.9 \times 40}{136} f'_c b_w d^2 - \frac{0.9 \times 40^2}{136^2 \times 0.85 \times 2} f'_c b_w d^2 \\ & \emptyset M_{n,max(SR),40} = \left[\frac{0.9 \times 40}{136} - \frac{0.9 \times 40^2}{136^2 \times 0.85 \times 2} \right] f'_c b_w d^2 \end{split}$$

Which on solving gives

Appendix

- Calculation of $\emptyset M_{n,max(SR)}$ for Grade 40 and Grade 60 steel
 - □ For Grade 60 steel:

Similarly,

$$A_{s,max,60} = \frac{f_c' b_w d}{223}$$

Putting in equation (A), will yield

 $\emptyset M_{n,max(SR),60} = \left[\frac{0.9 \times 60}{223} - \frac{0.9 \times 60^2}{223^2 \times 0.85 \times 2}\right] f_c' b_w d^2$

Which on solving gives

 $\emptyset M_{n,max(SR),60} = 0.204 f_c' b_w d^2$