

Lecture 03

Design of RC Members for Flexural and Axial Loads (Part – II)

By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar

drqaisarali@uetpeshawar.edu.pk https://drqaisarali.com

Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

Section – II

RC Members under Axial and Combined Loads (Columns)

Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

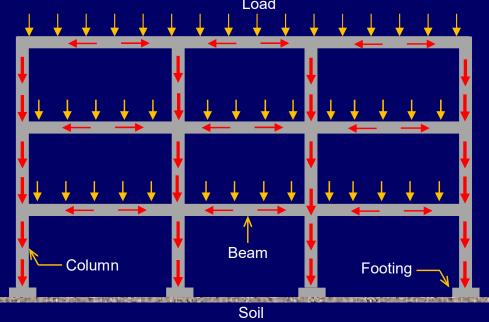
2

Introduction

- A structural member (usually vertical), used primarily to support axial compressive load is called column.
- However, columns would generally carry bending moments as well, about one or both axes of the cross section.

Introduction

- Columns transmit loads from upper floor levels to the lower floor levels and ultimately to the ground through the foundations.
- Unlike beams and slabs that carry the load of a single floor, columns bear the load of multiple floors above them, resulting in an accumulation of load.

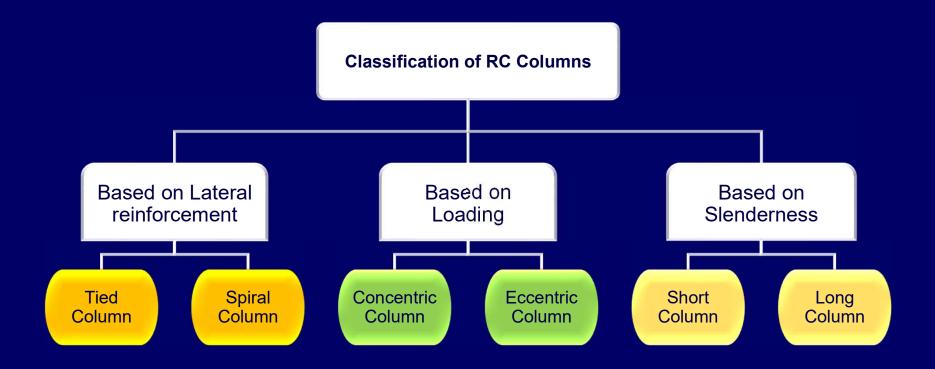


Reinforcement in RC Columns

- Longitudinal Reinforcement
 - They are provided parallel to the direction of the load to resist the Bending moment as well as the Compression.
- Lateral Reinforcement
 - The lateral reinforcement is provided in the form of ties or continuous spiral to resist Shear and to hold the longitudinal bars.

□ Classification of RC Columns

• RC columns can be classified on various bases as shown below.



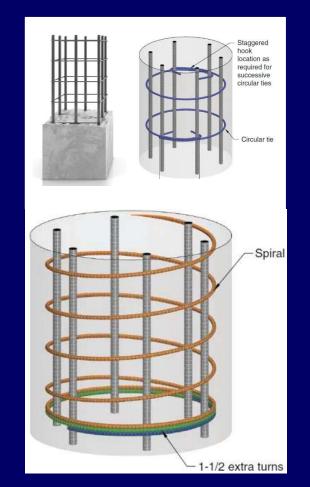
Types of RC Columns (based on lateral reinforcement)

1. Tied Columns

 Columns (of any shape) with closely spaced lateral ties/hoops.

2. Spiral Columns

- Columns (of any shape) with continuous spiral reinforcement wound in a helical pattern.
- They are generally more efficient than tied columns.



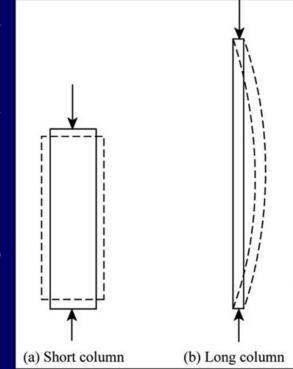
□ Types of RC Columns (based on slenderness)

1. Short Columns

- Columns that fail due to the failure of materials are called short columns.
- Most of the concrete columns fall in this category.

2. Long /Slender columns

 Columns in which failure occurs due to geometric instability (buckling) are called long columns.



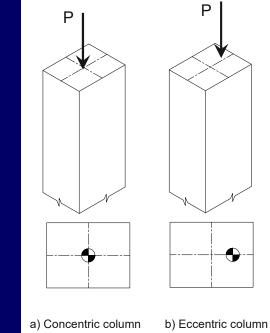
□ Types of RC Columns (based on loading)

1. Concentric Columns

 Columns in which applied load is aligned with its central axis, resulting in uniform compression throughout the column's cross-section.

2. Eccentric Columns

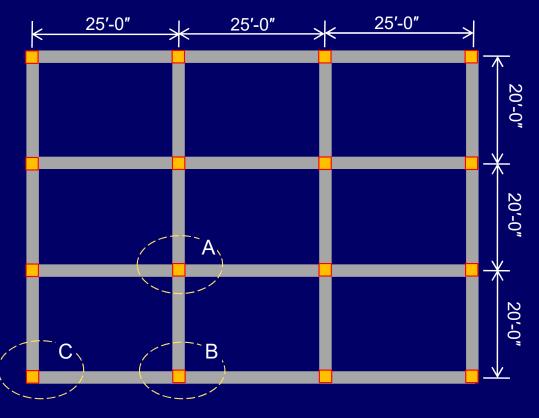
- Columns in which applied load does not coincide with its central axis, causing an uneven distribution of compression forces across the column's cross-section. They can be
 - 1. Uniaxially eccentric
 - 2. Biaxially eccentric



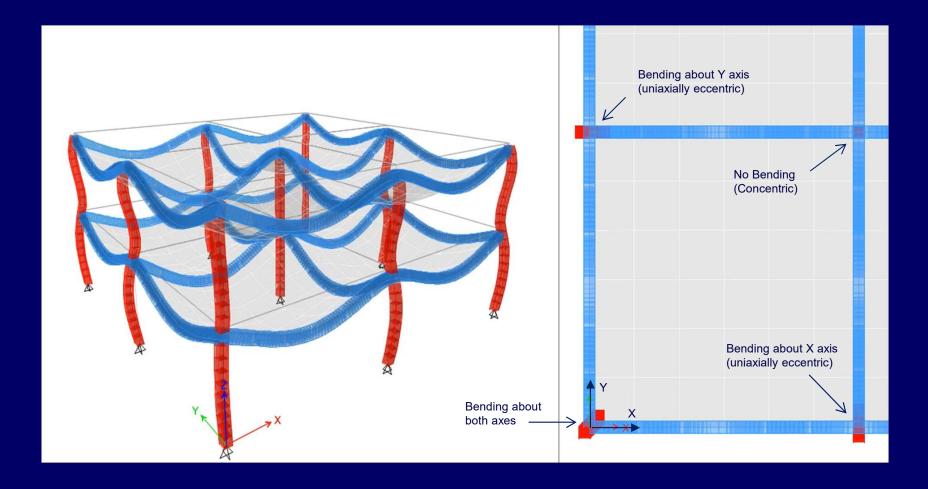
□ Types of RC Columns (based on loading)

When the spans are equal in both directions and the loading is uniformly distributed then

- A) Interior columns ⇒ Concentric
- B) Edge columns ⇒ Uniaxially eccentric
- c) Corner Columns ⇒ Biaxially eccentric



□ Types of RC Columns (based on loading)



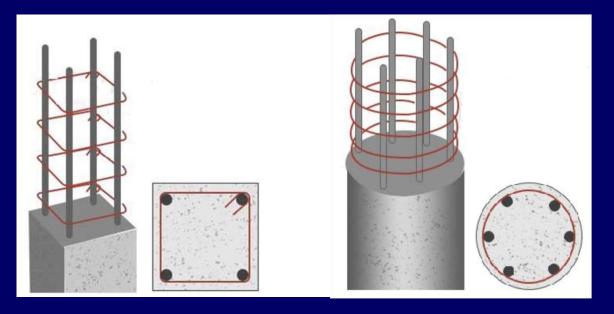
Dimensional Limits

• The ACI Code does not specify minimum column sizes for columns that are not part of the seismic-force-resisting system.

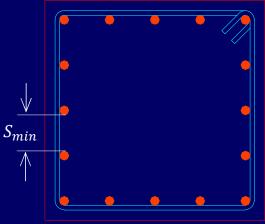
- a) Longitudinal reinforcement (ACI 10.6.1.1)
 - Area of longitudinal reinforcement shall be at least $0.01A_g$ but shall not exceed $0.08A_g$.
 - Minimum Reinforcement is necessary to provide resistance to bending, and to reduce the effects of creep and shrinkage of the concrete under sustained compressive stresses.

- a) Longitudinal Reinforcement
 - Maximum amount of longitudinal reinforcement is limited to ensure that concrete can be effectively consolidated around the bars.
 - Longitudinal reinforcement in columns usually does not exceed 4 percent as the lap splice zone will have twice as much reinforcement, if all lap splice occur at the same location.

- a) Longitudinal Reinforcement
 - Minimum diameter \Rightarrow #4 (ACI 10.7.3)
 - Minimum number of bars \Rightarrow 4 for rectangular columns 6 for circular columns.



- a) Longitudinal Reinforcement
 - Minimum Spacing Between Longitudinal bars (ACI 25.2.3)
 - Clear spacing between longitudinal bars shall be at least the greatest of; 1.5 in. and 1.5d_b (where d_b is the diameter of longitudinal bar).
 - However, to ensure proper concreting, it is better to maintain a minimum clear spacing of 3 inches.



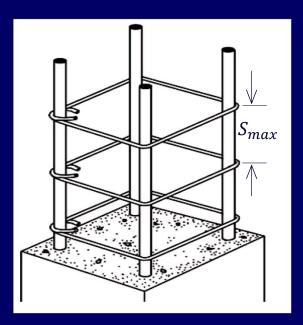
Reinforcement Limits

- b) Shear Reinforcement
 - Maximum Spacing of Lateral ties (ACI 25.7.2.1)
 - Maximum spacing S_{max} shall not exceed the least of;

i.
$$\frac{A_v f_y}{50b}$$

i.
$$\frac{A_v f_y}{0.75\sqrt{f_c'}b}$$

- iii. $16d_b$ of longitudinal bar
- iv. $48d_h$ of hoop/tie bar
- v. Smallest dimension of member



Note: These spacing requirements are for gravity loads only.

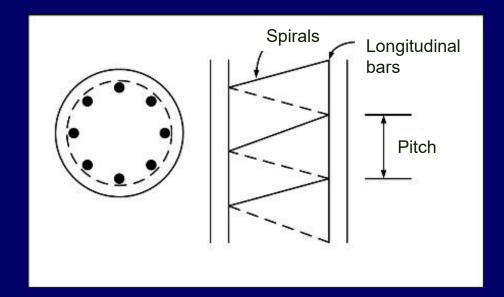
Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

- b) Shear Reinforcement
 - Minimum Diameter of Lateral Ties (ACI 25.7.2.2)
 - Diameter of tie bar shall be at least:
 - i. #3 for longitudinal bars having size up to #10.
 - ii. #4 for longitudinal bars having size larger than #10.

Reinforcement Limits

- b) Shear Reinforcement
 - Diameter and Spacing of Spiral Reinforcement (ACI 25.7.3)
 - The minimum spiral reinforcement size is 3/8 in.
 - Spacing/pitch of spiral must not be less than 1 in. and greater than 3 in.



Prof. Dr. Qaisar Ali

Axial Capacity

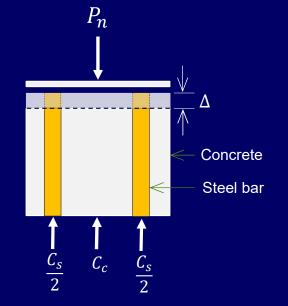
From the figure shown below, we have

 $P_n = C_c + C_s = f_c A_c + f_s A_s$

Because of the perfect bonding between concrete and steel bars, the strain in both materials will be identical. As a result, steel bars with a grade of 80 or lower will yield at the ultimate stage ($\epsilon_{\mu} = 0.003$).

$$f_c = 0.85 f_c'$$
 and $f_s = f_y$ (for $f_y \le 80 ksi$)

 $P_n = 0.85 f_c 'A_c + f_y A_s$



$$\epsilon_{y,40} = \frac{f_y}{E_s} = \frac{40}{29000} = 0.0014 < \epsilon_u = 0.003$$

$$\epsilon_{y,60} = \frac{60}{29000} = 0.0021 < \epsilon_u$$

$$\epsilon_{y,80} = \frac{80}{29000} = 0.0028 < \epsilon_u$$

□ Axial Capacity

Taking $A_c = A_g - A_{st}$ the preceding equation becomes

$$P_n = 0.85 f_c' (A_g - A_{st}) + f_y A_{st}$$

From which Design Axial capacity can be determined as;

$$\alpha \emptyset P_n = \alpha \emptyset [0.85 f_c'(A_g - A_{st}) + f_y A_{st}]$$
 (for tied column)
$$\alpha \emptyset P_n = \alpha \emptyset [0.85 f_c'(A_g - A_{st}) + f_y A_{st}]$$
 (for spiral column)

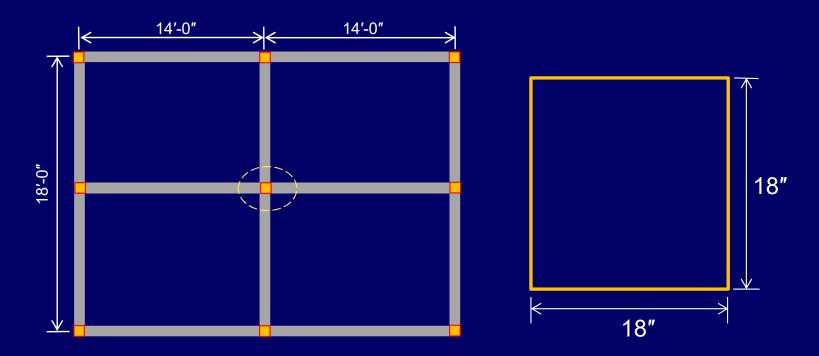
where;

 $\emptyset = 0.65$ for tied columns and 0.75 for spiral columns (ACI Table 21.2.2)

 $\alpha = 0.8$ for tied columns and 0.85 for spiral columns.

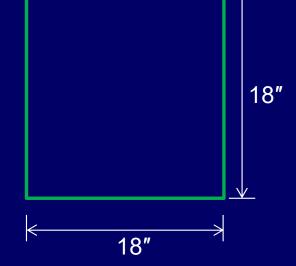
Example 3.7

• **Design** the interior column shown in figure to support a factored axial compressive load of 500 kips. The specified material strengths are; $f'_c = 3$ ksi and $f_y = 60$ ksi.



Solution

- Given Data
 - b = 18''
 - h = 18''
 - $A_g = 18'' \times 18'' = 324 \ in^2$
 - $P_u = 500 \ kip$
 - $f_c' = 3 ksi$
 - $f_y = 60 \ ksi$



Required Data

Design the column for the given axial load

□ Solution

Step 1: Determination of Longitudinal Reinforcement

Calculate design axial capacity of column by assuming 1% steel area and compare the calculated capacity with demand axial load.

$$\begin{split} A_{st} &= 0.01 A_g \\ \alpha \emptyset P_n &= 0.80 \times 0.65 \big[0.85 \times 3 \; (A_g - 0.01 A_g) + (60) 0.01 A_g \big] = 1.625 A_g \\ \alpha \emptyset P_n &= 1.625 (324) = 526.5 \; \text{kip} > P_u \rightarrow \; \text{OK!} \end{split}$$

Therefore, $A_{st} = 0.01A_g = 0.01(324) = 3.24 in^2$

Prof. Dr. Qaisar Ali

Solution

Step 2: Determination of Longitudinal Reinforcement

Using #6 bar with $A_b = 0.44in^2$

Number of bars
$$=\frac{A_s}{A_b} = \frac{3.24}{0.44} = 7.36 \approx 8$$

Hence use 8,#6 bars.

Note:

- To maintain the symmetrical distribution along the perimeter of the crosssection, the number of bars in a square column should be a multiple of 4.
- The configuration may alter for a rectangular or circular column.

□ Solution

> Step 2: Detailing of Lateral / shear Reinforcement

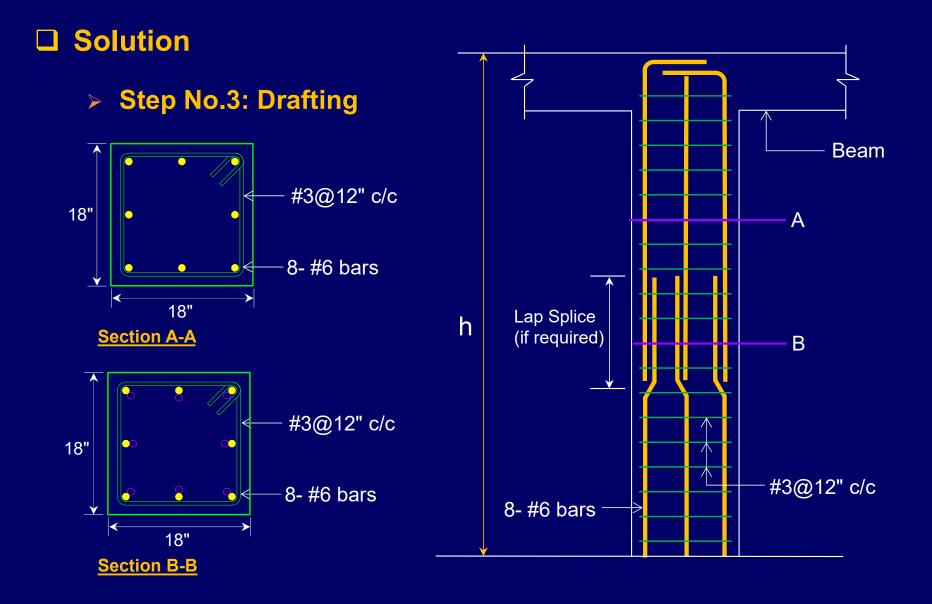
Using #3 bar with $A_b = 0.11in^2$, maximum spacing S_{max} is the least of:

i.
$$\frac{A_v f_y}{50b}$$
 = 0.22 x 60,000/ (50x18) = 14.6"

ii.
$$\frac{A_v f_y}{0.75\sqrt{f_c'}b} = 0.22 \times 60,000 / (0.75\sqrt{3000} \times 18) = 17.9''$$

- iii. $16d_b$ of longitudinal bar = $16 \ge 0.75 = 12''$
- iv. $48d_h$ of hoop/tie bar = $48 \times 3/8 = 18''$
- v. Smallest dimension of member = 18"

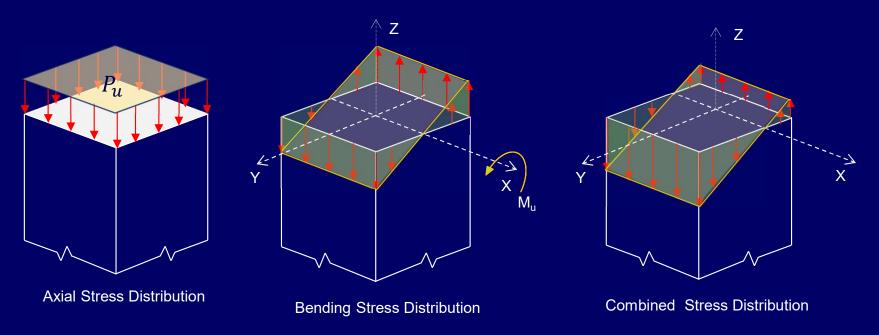
Therefore, $S_{max} = 14.6^{"}$. Finally provide #3 ties @ 12" c/c



Design of RC Members Under Axial Loads with Uniaxial Bending

Introduction

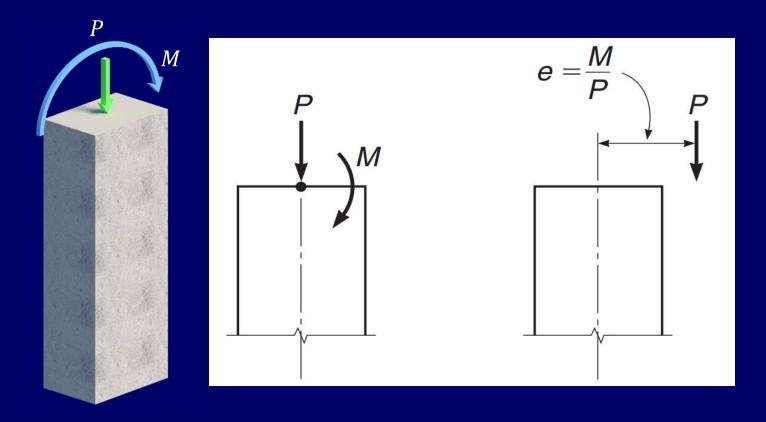
- An eccentrically loaded column is one that is subjected to both axial load and bending moment simultaneously.
- As a result, combined stresses are induced in the section as shown below.



Design of RC Members Under Axial Loads with Uniaxial Bending

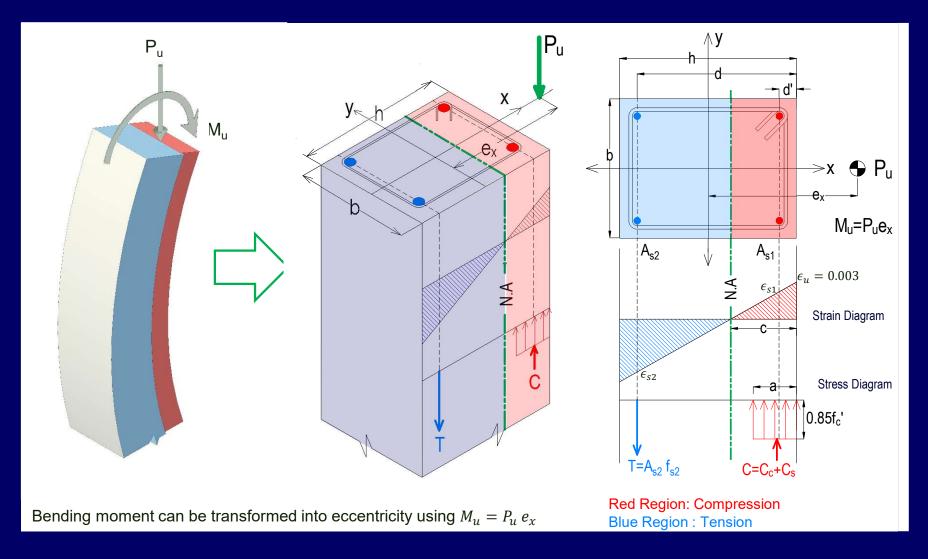
Introduction

• To simplify the computations, this coupled action can be transformed into *P* and the equivalent eccentricity *e*.



Design of RC Members Under Axial Loads with Uniaxial Bending

Introduction



CE 5115: Advance Design of Reinforced Concrete Structures

Design of RC Members Under Axial Loads with Uniaxial Bending

Calculation of Capacity

a. Axial Capacity

From the Figure;

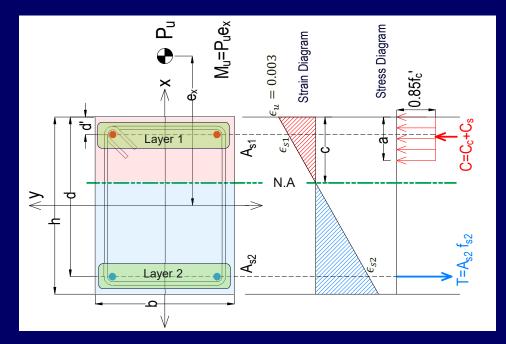
$$P_n = C_c + C_s - T_s$$

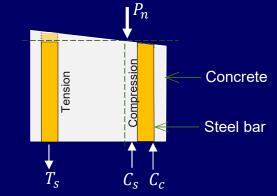
$$P_n = 0.85f_c'ab + f_{s1}A_{s1} - f_{s2}A_{s2}$$

$$P_n = 0.85 f_c' \beta_1 cb + A_s (f_{s1} - f_{s2})$$

Taking $\beta_1 = 0.85$ gives

(Note that A_s is steel area of a SINGLE layer, not the total steel area)





Design of RC Members Under Axial Loads with Uniaxial Bending

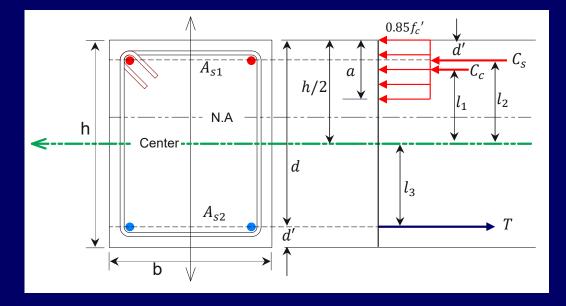
Calculation of Capacity

b. Flexural Capacity

$$M_n = C_c l_1 + C_s l_2 + T_s l_3$$

From figure;

 $l_1 = \frac{h}{2} - \frac{a}{2}$ $l_2 = \frac{h}{2} - d'$ $l_3 = \frac{h}{2} - d'$



Where;

 $C_c = 0.85 f'_c ab = 0.85 f'_c \beta_1 bc$

$$C_s = A_{s1}f_s$$

$$T_s = A_{s2} f_{s2}$$

Now, taking moment about the center of section,

Prof. Dr. Qaisar Ali

Design of RC Members Under Axial Loads with Uniaxial Bending

Calculation of Capacity

b. Flexural Capacity

$$M_n = 0.85 f_c' \beta_1 bc \left(\frac{h}{2} - \frac{a}{2}\right) + A_{s1} f_{s1} \left(\frac{h}{2} - d'\right) + A_{s2} f_{s2} \left(\frac{h}{2} - d'\right)$$

Since $A_{s1} = A_{s2} = A_s$, therefore

$$M_n = \frac{0.85}{2} \beta_1 f'_c bc(h-a) + A_{s1}(h/2 - d')(f_{s1} + f_{s2})$$

 $M_n = 0.36 f'_c bc(h - 0.85c) + A_s(h/2 - d')(f_{s1} + f_{s2})$ [taking $\beta_1 = 0.85$]

From which the design flexural capacity is determined as,

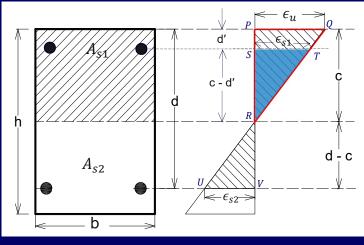
$$\emptyset M_n = \emptyset [0.36f_c'bc(h-0.85c) + A_s(h/2 - d')(f_{s1} + f_{s2})] \quad ---- (3.4)$$

Design of RC Members Under Axial Loads with Uniaxial Bending

□ Calculation of Capacity

• Calculation of Normal Stresses in Steel (f_{s1} and f_{s2})





Substituting $E_s = 29000$ ksi and $\epsilon_u = 0.003$, we get

$$f_{s1} = 87\left(1 - \frac{d'}{c}\right)$$

Design of RC Members Under Axial Loads with Uniaxial Bending

□ Calculation of Capacity

- Calculation of Normal Stresses in Steel (*f*_{s1} and *f*_{s2})
 - Tensile stress *f*_{s2}

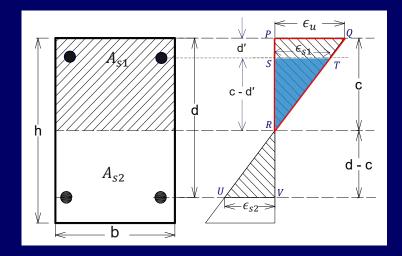
$$f_{s2} = E_s \epsilon_{s2}$$

From $\Delta PQR \leftrightarrow \Delta VUR$, we have

$$\frac{\epsilon_{s2}}{d-c} = \frac{\epsilon_u}{c} \implies \epsilon_{s2} = \frac{\epsilon_u(d-c)}{c}$$

$$f_{s2} = E_s \frac{\epsilon_u (d-c)}{c}$$

$$f_{s2} = 87 \left(\frac{d}{c} - 1\right)$$



CE 5115: Advance Design of Reinforced Concrete Structures

Design of RC Members Under Axial Loads with Uniaxial Bending

□ Limitations of Equations 3.3 and 3.4

- > It is important to note that equations 3.3 and 3.4 are valid for
 - 1. Two layers of reinforcement.
 - 2. $f'_c \leq 4000 \text{ psi}$ (since $\beta_1 = 0.85 \text{ was used}$)
- > For intermediate layers of reinforcement, the corresponding terms with " A_s " shall be added in the equations.

Design of RC Members Under Axial Loads with Uniaxial Bending

Design Approaches

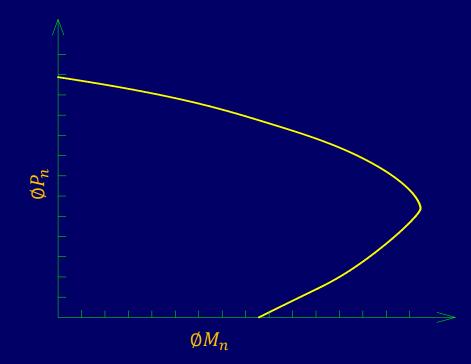
 In case of flexural members (with no or negligible axial load), the flexural capacity is expressed as:

- However, such straightforward equations cannot be derived when members are subjected to combined loading.
- This is because the flexural and axial capacities are inherently coupled (dependent on each other) and cannot be separately dealt with. Consequently, for such members, two commonly used approaches are:
 - 1. Interaction Diagram 2. Design Aids

Prof. Dr. Qaisar Ali

Interaction Diagram

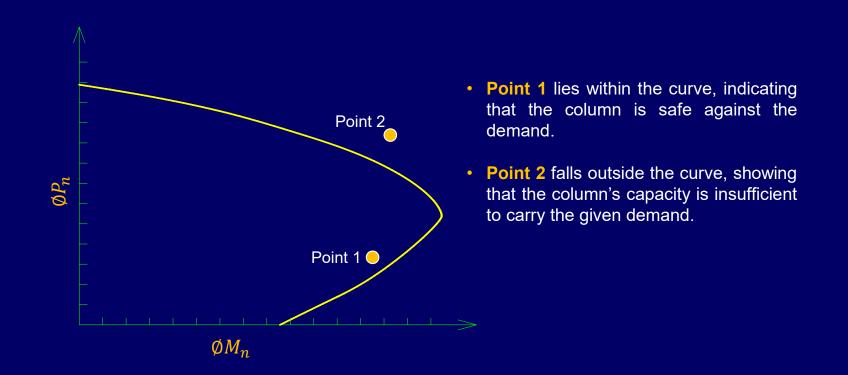
 A graphical representation that shows the interaction/relationship between axial capacity and flexural capacity of a structural member having known material properties, dimensions and reinforcement is called Interaction diagram or Capacity curve.



Prof. Dr. Qaisar Ali

Interaction Diagram

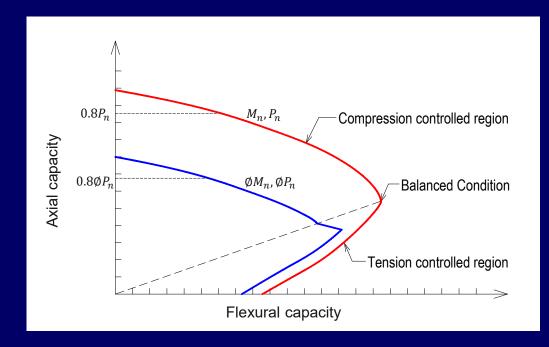
• If the factored demand in the form of P_u and M_u lies inside or at the border line of the design interaction diagram, the column will be deemed safe against the given demand, otherwise it is failed.



Design of RC Members Under Axial Loads with Uniaxial Bending

Interaction Diagram

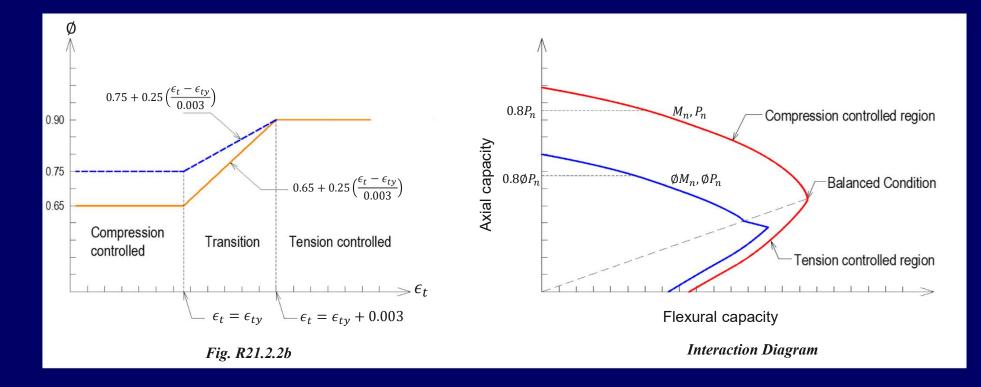
The horizontal cutoff at upper end of the curve at a value of αØP_n represents the maximum design load specified in the ACI 318-19 10.4.2.1 for small eccentricities i.e., large axial loads.



Design of RC Members Under Axial Loads with Uniaxial Bending

Interaction Diagram

• Linear Variation of Strength Reduction Factor Ø



Development of Interaction Diagram

• The interaction diagram can be developed by calculating certain points at key locations, using different values of *c*. These points are obtained from equations 3.3 and 3.4 as described below.

$$\emptyset P_n = \emptyset [0.72f'_c bc + A_s(f_{s1} - f_{s2})]$$

$$\emptyset M_n = \emptyset [0.36f_c'bc(h-0.85c) + A_s(h/2 - d')(f_{s1} + f_{s2})]$$

$$f_{s1} = 87\left(1 - \frac{d'}{c}\right) \le f_{y}$$

$$f_{s2} = 87\left(\frac{d}{c} - 1\right) \le f_y$$

For a given set of material properties (f_c', f_y) , dimensions (b, h, d, d') and area of reinforcement (A_s) , the only variable that remains unknown is the depth of the neutral axis, c.

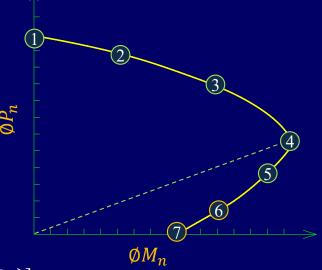
Development of Interaction Diagram

- Point 1 is determined using equation of concentrically loaded column ignoring α factor. $\emptyset P_n = \emptyset [0.85 f_c'(A_g A_{st}) + f_y A_{st}]$
- All other control points can be obtained using the following 3 steps.
 - 1. Assume reasonable value of c.
 - 2. Compute f_{s1} and f_{s2}

$$f_{s1} = 87\left(1 - \frac{d'}{c}\right) \le f_y$$
 and $f_{s2} = 87\left(\frac{d}{c} - 1\right) \le f_y$

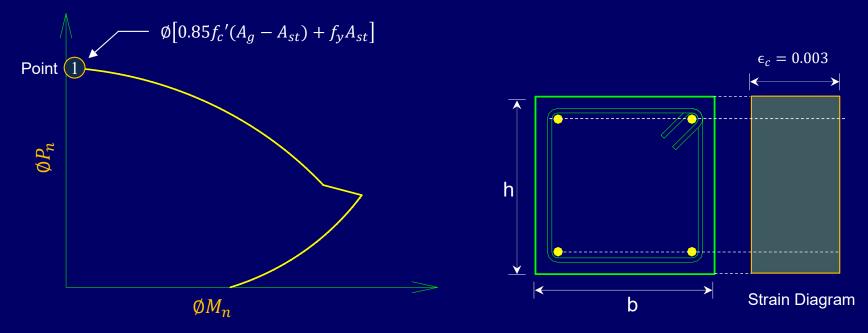
$$\emptyset P_n = \emptyset [0.72f'_c bc + A_s(f_{s1} - f_{s2})]$$

 $\emptyset M_n = \emptyset [0.36f'_c bc(h - 0.85c) + A_s(h/2 - d')(f_{s1} + f_{s2})]$



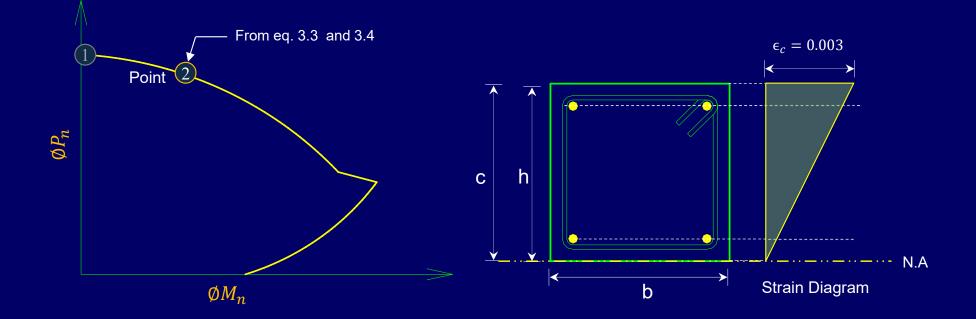
Design of RC Members Under Axial Loads with Uniaxial Bending

- Point 1
 - Point representing capacity of column when concentrically loaded.
 - This is the point at which $M_n = 0$.
 - Design axial capacity equation of concentric column will be used.



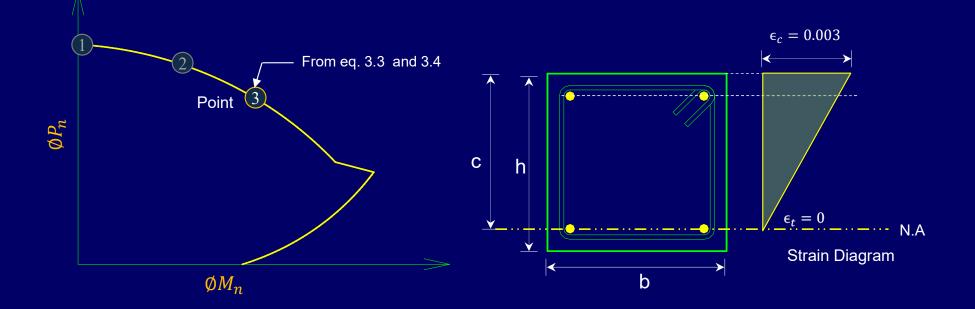
Design of RC Members Under Axial Loads with Uniaxial Bending

- Point 2
 - This point corresponds to crushing of the concrete at the compression face of the section and zero stress at the other face.
 - c = h and $\phi = 0.65$



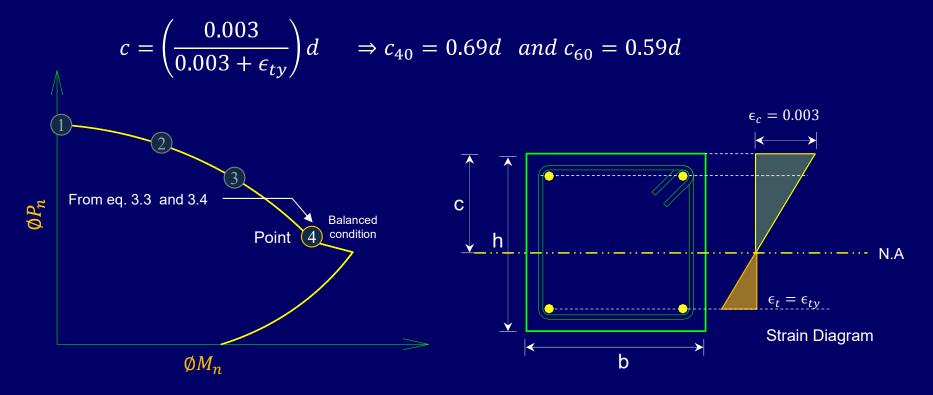
Design of RC Members Under Axial Loads with Uniaxial Bending

- Point 3
 - At Point 3, the strain in the reinforcing bars farthest from the compression face is equal to zero.
 - c = h d' and $\emptyset = 0.65$



Design of RC Members Under Axial Loads with Uniaxial Bending

- Point 4
 - Point representing capacity of column for balance failure condition $\epsilon_t = \epsilon_{ty}, \epsilon_c = 0.003$ and $\emptyset = 0.65$



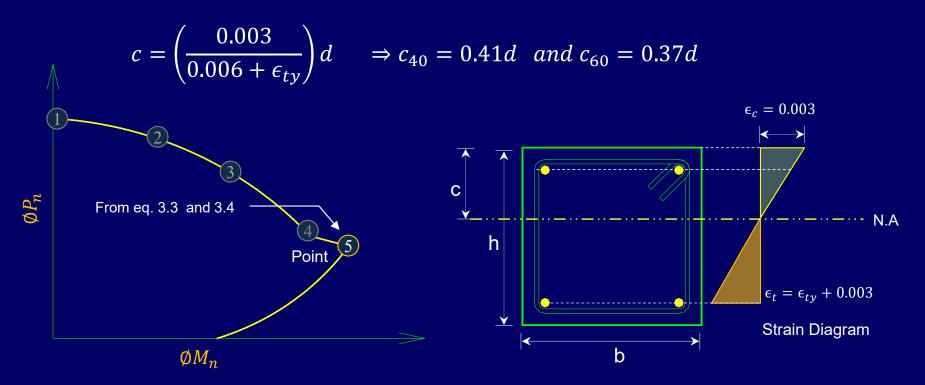
Design of RC Members Under Axial Loads with Uniaxial Bending

Development of Interaction Diagram

Point 5

• Point on capacity curve for which $\epsilon_t = \epsilon_{ty} + 0.003$, $\epsilon_c = 0.003$

• $\phi = 0.90$ or 0.65 (designer's preference)

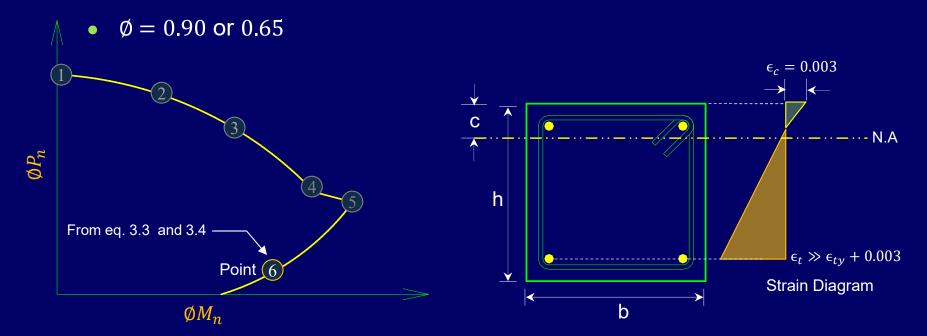


Design of RC Members Under Axial Loads with Uniaxial Bending

Development of Interaction Diagram

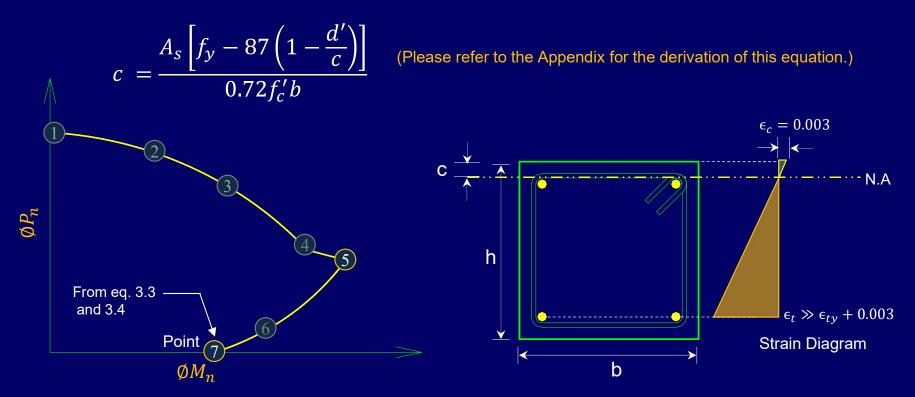
Point 6

- Point on capacity curve at which the strain in tension steel is sufficiently greater than yield. Let consider ϵ_t two times that of point 5, then
- $c_{40} = 0.25d$, $c_{60} = 0.23d$ (for simplicity, assume c = 0.25d for both grades)



Design of RC Members Under Axial Loads with Uniaxial Bending

- Point 7
 - This is the pure bending case on capacity curve at which the axial load is zero and and $\emptyset = 0.90$ or 0.65 and c can be taken as;

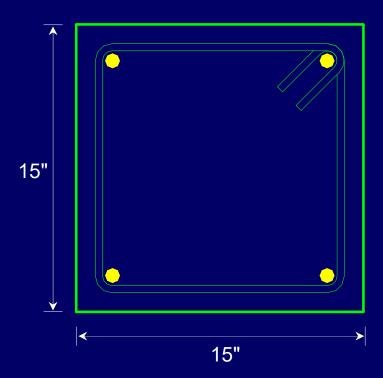


Development of Interaction Diagram (summary)

Point	c (in.)	f_{s1} (ksi)	f _{s2} (ksi)	Ø P_n (kip)	Ø M_n (ft.kip)				
1	Axial capacity			Eq. (1a)	0				
2	c = h			Eq. (1b)	Eq. (2)				
3	c = h - d'	$\leq f_y$	$\leq f_y$	_q. (12)					
4	$c_{40} = 0.69d$ and $c_{60} = 0.59d$	$\left(\frac{d'}{c}\right) =$							
5	$c_{40} = 0.41d$ and $c_{60} = 0.37d$	-1	$\left(rac{d}{c}-1 ight)$						
6	c = 0.25d	= 87	= 87						
7	$c = \frac{A_s \left[f_y - 87 \left(1 - \frac{d'}{c} \right) \right]}{0.72 f_c' b}$	f_{s1}	fs2	0					
$. \phi P_n = \phi [0.85 f_c' (A_g - A_{st}) + f_y A_{st}]$ Eq. (1a)									
$ \emptyset M_n = \emptyset[0] $	$ \emptyset M_n = \emptyset [0.36f'_c bc(h - 0.85c) + A_s(h/2 - d')(f_{s1} + f_{s2})] Eq. (2) $								

Example 3.8

• *Develop* interaction diagram for the given column. The material strengths are $f'_c = 3$ ksi and $f_v = 60$ ksi with 4 - #8 bars.



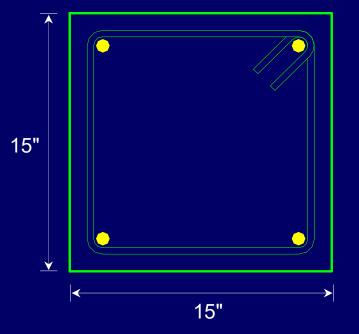
Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

- Given Data
 - b = 15''
 - h = 15''
 - $A_s = 4 \times 0.79 = 3.16 \text{ in}^2$

$$f_c' = 3 \text{ ksi}$$

$$f_y = 60$$
 ksi



Required Data

Develop Interaction diagram

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

Point 1: Pure Axial Condition

The pure axial capacity of column (ignoring α) is given by

 $\emptyset P_n = 0.65 [0.85 f_c' (A_g - A_s) + f_y A_s]$

On substituting values;

And

 $\emptyset M_n = 0$

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

Point 2

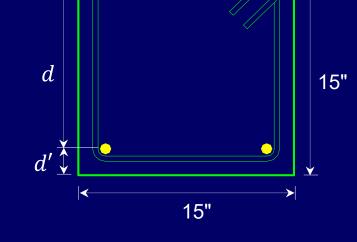
d' and d can be calculated as;

$$d' = 1.5 + \frac{3}{8} + \frac{8}{16} = 2.375'$$

and

$$d = 15 - d' = 12.625$$
"

Now, with c = h = 15''



 $f_{s1} = 87(1 - d'/c) = 87(1 - 2.375/15) = 73.2 \text{ ksi} > f_y \rightarrow use f_{s1} = 60 \text{ ksi}$

and

$$f_{s2} = 87(d/c - 1) = 87(12.625/15 - 1) = -13.8 \text{ ksi} < f_y \rightarrow use f_{s2} = -13.8 \text{ ksi}$$

CE 5115: Advance Design of Reinforced Concrete Structures

Solution

Point 2

Now, from eq.(3.3) and (3.4) we have

 $= 0.65[0.72 \times 3 \times 15 \times 15 + 1.58(60 + 13.8)] = 391.7$ kip

Similarly,

Solution

Point 3

with c = h - d' = 15 - 2.375 = 12.625''

 $f_{s1} = 87(1 - 2.375/12.625) = 70.6 \text{ ksi} > f_y \rightarrow use f_{s1} = 60 \text{ ksi}$

 $f_{s2} = 87(12.625/12.625 - 1) = 0$

Now,

 $\emptyset M_n = 0.65[0.36 \times 3 \times 15 \times 12.625(15 - 0.85 \times 12.625) + 1.58(5.125)(60 + 0)]$ = 883.29 in.kip or **73.6 ft.kip**

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

Point 4: Balanced Condition

with $c_{60} = 0.59d = 0.59 \times 12.625 = 7.45''$

 $f_{s1} = 87(1 - 2.375/7.45) = 59.3 \text{ ksi} < f_y \rightarrow use f_{s1} = 59.3 \text{ ksi}$

 $f_{s2} = 87(12.625/7.45 - 1) = 60.43 > f_y \rightarrow use f_{s2} = 60$ ksi

Now,

 $\emptyset M_n = 0.65[0.36 \times 3 \times 15 \times 7.45(15 - 0.85 \times 7.45) + 1.58(5.125)(119.30)]$

= 1307.87 in. kip or **109.0 ft. kip**

Solution

Point 5

with $c_{60} = 0.37 d = 0.37 x 12.625 = 4.67''$

 $f_{s1} = 87(1 - 2.375/4.67) = 42.8 \text{ ksi} < f_y \rightarrow use f_{s1} = 42.8 \text{ ksi}$

 $f_{s2} = 87(12.625/4.67 - 1) = 148.3 > f_y \rightarrow use f_{s2} = 60$ ksi

Now,

 $\emptyset M_n = 0.90[0.36 \times 3 \times 15 \times 4.67(15 - 0.85 \times 4.67) + 1.58(5.125)(42.8 + 60)]$

= 1500.23 in. kip *or* **125**.**0 ft**. **kip**

Solution

Point 6

with $c = 0.25d = 0.25 \times 12.625 = 3.16''$

 $f_{s1} = 87(1 - 2.375/3.16) = 21.6 \text{ ksi} < f_y \rightarrow use f_{s1} = 21.6 \text{ ksi}$

 $f_{s2} = 87(12.625/3.16 - 1) = 260.6 > f_y \rightarrow use f_{s2} = 60$ ksi

Now,

 $\emptyset M_n = 0.90[0.36 \times 3 \times 15 \times 3.16(15 - 0.85 \times 3.16) + 1.58(5.125)(21.6 + 60)]$

= 1162.02 in. kip or **96.8 ft. kip**

Solution

Point 7: Pure Bending Condition

 $c = \frac{A_s \left[f_y - 87 \left(1 - \frac{d'}{c} \right) \right]}{0.72 f_c' b} \Rightarrow \text{ on solving and neglecting negative root, c} = 2.58''$

 $f_{s1} = 87(1 - 2.375/2.58) = 6.9 \text{ ksi} < f_y \rightarrow use f_{s1} = 6.9 \text{ ksi}$

 $f_{s2} = 87(12.625/2.58 - 1) = 338.7 \text{ ksi} > f_y \rightarrow use f_{s2} = 60 \text{ ksi}$

Now,

 $\emptyset M_n = 0.90[0.36 \times 3 \times 15 \times 2.58(15 - 0.85 \times 2.58) + 1.58(5.125)(66.9)]$

= 969.30 in. kip or **80.8 ft. kip**

Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

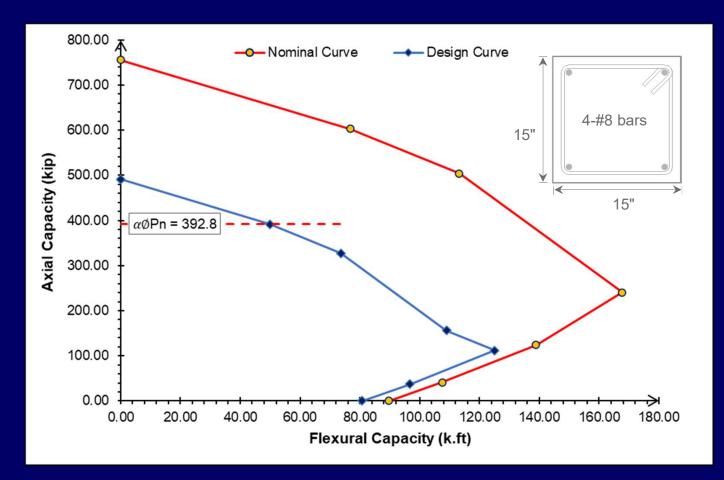
Summary of Calculations

Point	с (in.)	f _{s1} (ksi)	f _{s2} (ksi)	ØP _n (kip)	ØM _n (kip.ft)	Remarks	
1				281.5	0		
2	15.00	60.0	-13.8	391.7	49.9	Compression controlled region	
3	12.625	60.0	0.0	327.5	73.6		
4	7.45	59.3	60.0	156.2	109.0	Balanced condition	
5	4.67	42.8	60.0	111.8	125.0	Tension controlled region	
6	3.16	21.6	60.0	37.5	96.8		
7	2.58	6.9	60.0	0.0	80.8		

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

* Plot of Interaction Curve



Design Aids

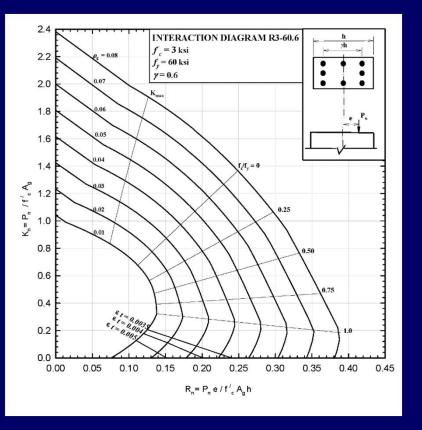
- In practice, Design Aids are used for the design of eccentrically loaded RC columns.
- They can be found in handbooks and special volumes published by the American Concrete Institute (ACI).
- They cover the most frequent practical cases, such as symmetrically reinforced rectangular and square columns and circular spirally reinforced columns.
- Design Aids for different ranges of f_c' and f_y are provided in <u>Appendix.</u> (at the end of this lecture).

Design of RC Members Under Axial Loads with Uniaxial Bending

Procedure of using Design Aids

- 1. Select a trial cross-sectional dimensions *b* and *h*
- 2. Calculate the ratio γ based on required cover distances to the bar centroids and select the corresponding column design chart.

$$\gamma = \frac{h - 2 d'}{h}$$



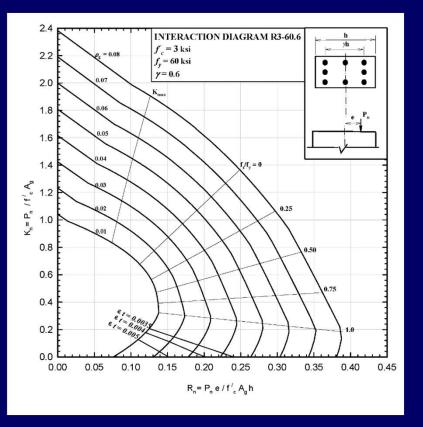
Design of RC Members Under Axial Loads with Uniaxial Bending

Procedure of using Design Aids

4. Calculate K_n and R_n factor

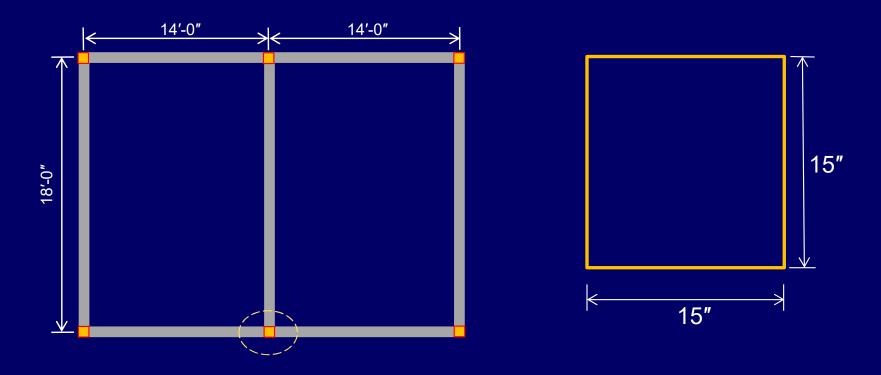
$$K_n = \frac{P_u}{\emptyset f_c' b h}$$
$$R_n = \frac{M_u}{\emptyset f_c' b h^2}$$

- 5. Using values of K_n and R_n , read the required reinforcement ratio ρ_g from the graph.
- 6. Calculate the total steel area $A_{st} = \rho_g bh$



Example 3.9

• **Design** the highlighted edge column to support a factored load of 450 kip and a factored moment of 80 ft.kip. The material strengths are $f_c' = 4$ ksi and $f_y = 60$ ksi.



Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

1. Dimensions are already given to us

b = h = 15"

2. Calculate ratio γ

$$\gamma = \frac{h - 2 d'}{h}$$

Assuming d' = 2.5 in

$$\gamma = \frac{15 - 2(2.5)}{15} = 0.67$$

 $\gamma \approx 0.70$

Design of RC Members Under Axial Loads with Uniaxial Bending

Solution

3. Calculate K_n and R_n factor

 $K_n = \frac{P_u}{\emptyset f'_c bh} = \frac{450}{0.65 \times 4 \times 15 \times 15}$ $K_n = 0.77$

$$R_n = \frac{M_u}{\emptyset f_c' b h^2} = \frac{80 \times 12}{0.65 \times 4 \times 15 \times 15^2}$$

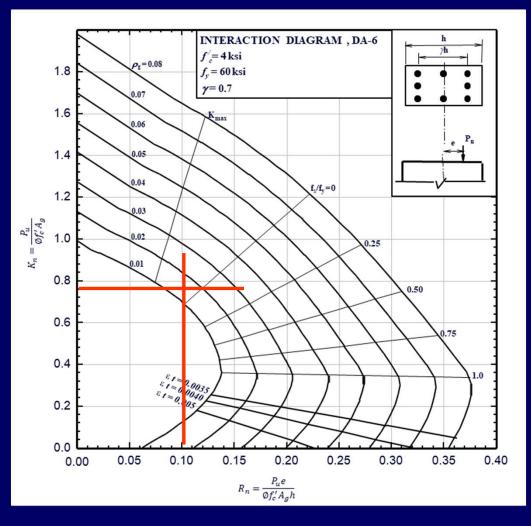
 $R_n = 0.11$

For $\gamma = 0.70$, $f'_c = 4$ ksi and $f_y = 60$ ksi, the relevant Design Aid is DA-6 (from Appendix).

Design of RC Members Under Axial Loads with Uniaxial Bending

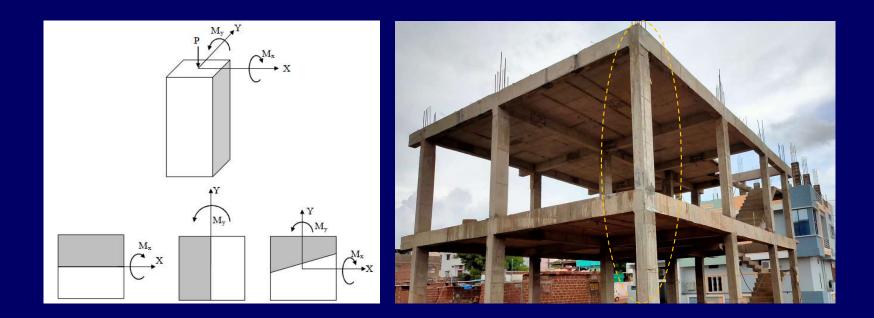
Solution

3. Read ρ_g from the graph $\rho_g = 0.015$ Calculate Area of steel $A_{st} = 0.015A_g = 3.38 in^2$ Using #6 bar No. of bars $= \frac{3.38}{0.44} \approx 8$



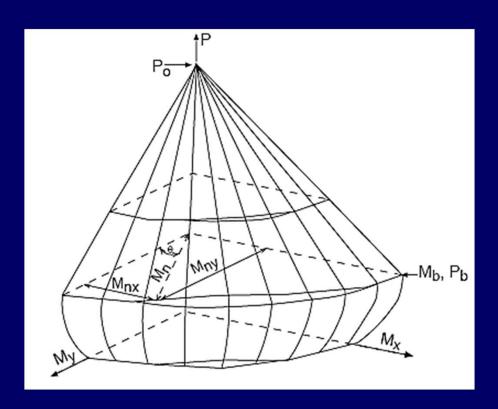
Introduction

Column section subjected to compressive load (P_u) at eccentricities
 e_x and e_y along x and y axes causing moments M_{uy} and M_{ux} respectively.



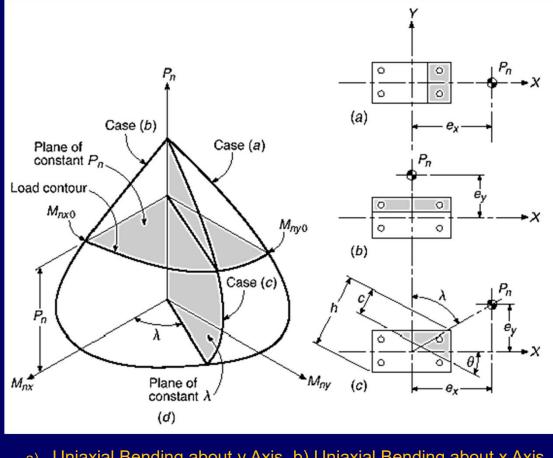
Behavior of Columns Subjected to Biaxial Bending

 The biaxial bending resistance of an axially loaded column can be represented as a surface formed by a series of uniaxial interaction curves drawn radially from the P axis.



Design of RC Members Under Axial Loads with Biaxial Bending

Behavior of Columns Subjected to Biaxial Bending

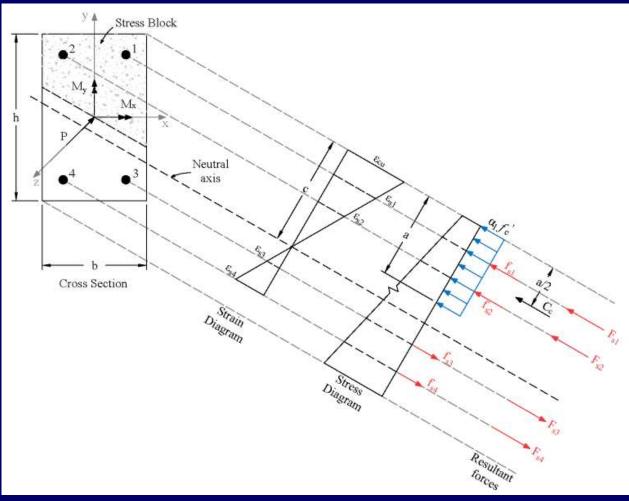


a) Uniaxial Bending about y Axis, b) Uniaxial Bending about x Axis,

c) Biaxial bending about Diagonal Axis.

Design of RC Members Under Axial Loads with Biaxial Bending

Behavior of Columns Subjected to Biaxial Bending



Force, Strain and Stress Distribution Diagrams for Biaxial Bending

Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

Difficulties in Constructing Biaxial Interaction Surface

- The triangular or trapezoidal compression zone.
- Neutral axis, not in general, perpendicular to the resultant eccentricity.

Analysis Methods

- Following are the Approximate methods for analyzing RC Members Under Axial Loads with Biaxial Bending:
 - PCA Approximate Method
 - Bressler's Reciprocal Load Method
 - Bresler Load Contour Method

PCA Approximate Method

- The Portland Cement Association (PCA) has developed equations to transform biaxial demands into equivalent uniaxial demands.
- The method is suitable for rectangular sections with reinforcement equally distributed on all faces.

$$M_{nox} = M_{nx} + \frac{h}{b} \left(\frac{1-\beta}{\beta}\right) M_{ny} \qquad - (Eq. 20, Ch\#7, PCA)$$

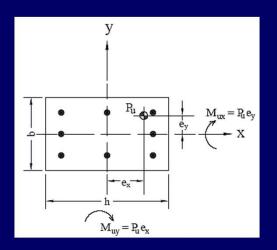
$$M_{noy} = M_{ny} + \frac{b}{h} \left(\frac{1-\beta}{\beta}\right) M_{nx} \qquad - (Eq. 17, Ch\#7, PCA)$$

Prof. Dr. Qaisar Ali

PCA Approximate Method

- In the above equations the factor β ranges from 0.65 to 0.7.
- A value of 0.65 for β is generally a good initial choice in a biaxial bending analysis.
- Taking value of β = 0.65, and converting nominal moments to factored moments, the equations can be simplified as below:

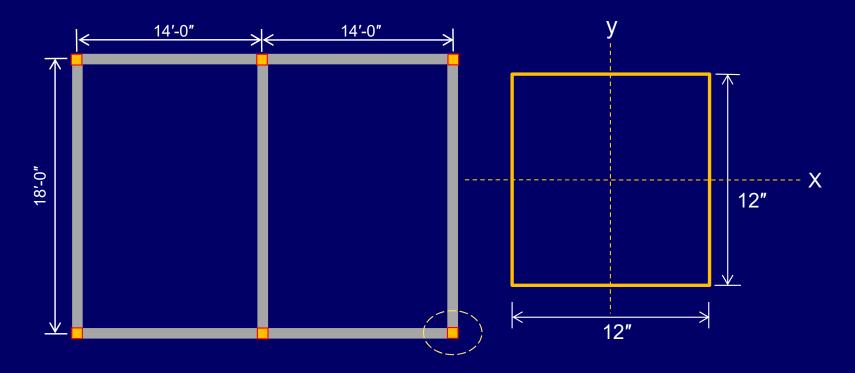
$$M_{uox} = M_{ux} + 0.54M_{uy}\left(\frac{h}{b}\right) \qquad ---- (3.5)$$
$$M_{uoy} = M_{uy} + 0.54M_{ux}\left(\frac{b}{h}\right) \qquad ---- (3.6)$$



NOTE: Pick the larger moment for onward calculations.

Example 3.10

• Using PCA Approximate Method, *Determine* Area of longitudinal reinforcement for the highlighted corner column, to support factored axial load of 190 kip and factored moments of 35 ft.kip about x axis and 50 ft.kip about y axis. Take $f_c' = 4$ ksi and $f_v = 60$ ksi.



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 1: Converting Biaxial Case to Uniaxial Case

Determine the values of M_{uox} and M_{uoy} as follows:

 $M_{uox} = 35 + 0.54 \times 50(12/12) = 62 \text{ ft. kip}$ $M_{uoy} = 50 + 0.54 \times 35(12/12) = 68.9 \text{ ft. kip}$ Take the larger value

The biaxial column can now be designed as an equivalent uniaxial column with moment $M_u = 68.9$ ft.kip

Prof. Dr. Qaisar Ali

Solution

> Step 2: Calculate Reinforcement using Design Aids

$$\gamma = \frac{12 - 2(2.5)}{12} = 0.583 \approx 0.60$$

$$K_n = \frac{P_u}{\emptyset f_c' bh} = \frac{190}{0.65 \times 4 \times 12 \times 12} = 0.51$$

$$R_n = \frac{M_u}{\emptyset f_c' b h^2} = \frac{68.9 \times 12}{0.65 \times 4 \times 12 \times 12^2} = 0.18$$

• For $\gamma = 0.60$, $f'_c = 4$ ksi and $f_y = 60$ ksi, the relevant Design Aid is DA – 2 (from Appendix)

Prof. Dr. Qaisar Ali

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

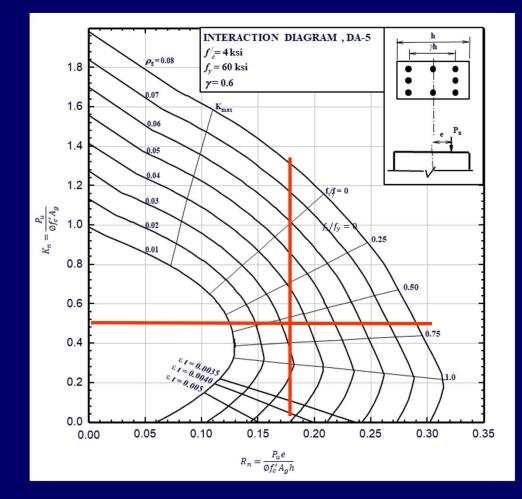
- Step 2: Calculate Reinforcement using Design Aids
- From graph: $\rho_g = 0.033$
- Calculate Area of Steel

$$A_{st} = 0.033A_g = 4.75 \ in^2$$

Using #6 bar:

No. of bars
$$=\frac{4.75}{0.44} = 10.8$$

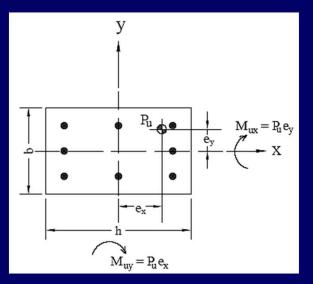
Provide 12-#6 bars



Design of RC Members Under Axial Loads with Biaxial Bending

Bressler's Approximate Methods

- 1. Reciprocal Load Method
 - Suitable for columns having factored axial load $P_u \ge 0.1A_g f_c'$.
- 2. Load Counter Method
 - Appropriate for columns having factored axial load $P_u < 0.1A_g f_c'$.



1. Reciprocal Load Method

 Bressler's reciprocal load equation can be derived from the geometry of the approximating plane. It can be shown that:

$$\frac{1}{P_n} = \frac{1}{P_{nx0}} + \frac{1}{P_{ny0}} + \frac{1}{P_0}$$

Where;

 P_n = approximate value of nominal load in biaxial bending with eccentricities e_x and $\mathsf{e}_y.$

 P_{nyo} = nominal axial capacity when only eccentricity e_x is present (e_y = 0),

 P_{nxo} = nominal axial capacity when only eccentricity e_y is present ($e_x = 0$),

 P_{no} = nominal axial capacity for concentrically loaded column

Design of RC Members Under Axial Loads with Biaxial Bending

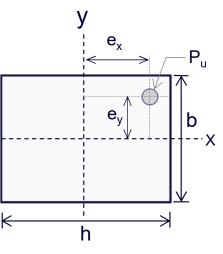
1. Reciprocal Load Method

- Stepwise Procedure
 - Step 1: Check Applicability of Method

 $P_n \ge 0.1A_g f'_c \rightarrow \text{applies}$, otherwise not.

> Step 2: Calculate Necessary Parameters

Bending about X axis	Bending about Y axis	
$\gamma = \frac{h - 2d'}{h}$	$\gamma = \frac{b - 2d'}{b}$	
$\frac{e_y}{b} = \frac{M_{ux}}{P_u b}$	$\frac{e_x}{h} = \frac{M_{uy}}{P_u h}$	
Assume $\rho = A_s/bh$		
Select relevant graph based on given f_c' , f_y and γ	Select relevant graph based on given f'_c , f_y and γ	K



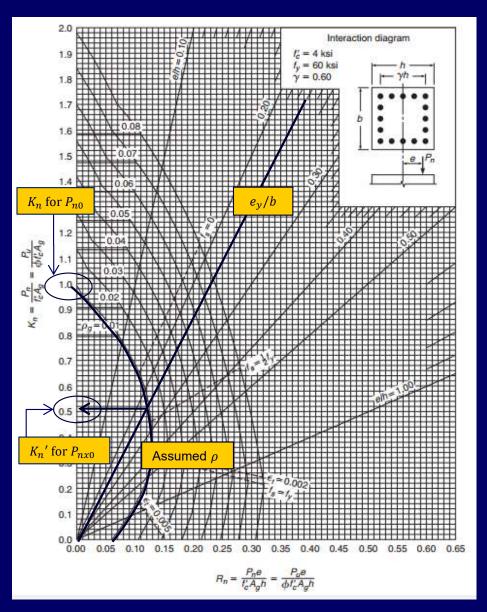
CE 5115: Advance Design of Reinforced Concrete Structures

Design of RC Members Under Axial Loads with Biaxial Bending

- 1. Reciprocal Load Method
 - Stepwise Procedure
 - Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
 - Bending about X axis

$$P_{n0} = \mathbf{k_n} A_g f_c'$$

$$P_{nx0} = k_n' A_g f_c'$$

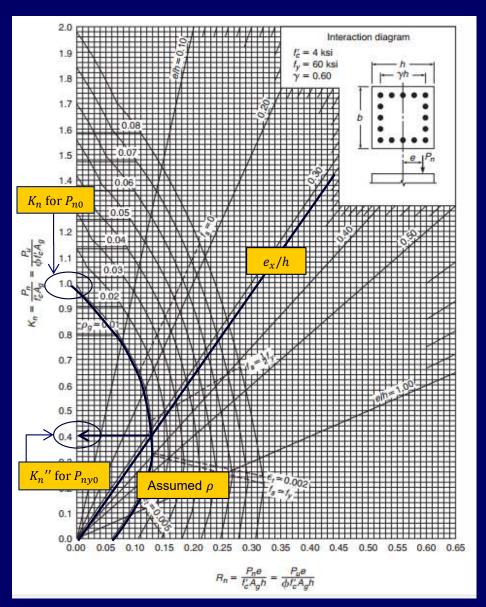


Design of RC Members Under Axial Loads with Biaxial Bending

- 1. Reciprocal Load Method
 - Stepwise Procedure
 - Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
 - Bending about Y axis

$$P_{n0} = \mathbf{k_n} A_g f_c'$$

 $P_{ny0} = k_n'' A_g f_c'$



Design of RC Members Under Axial Loads with Biaxial Bending

- 1. Reciprocal Load Method
 - Stepwise Procedure
 - Step 4: Calculate Axial Capacity

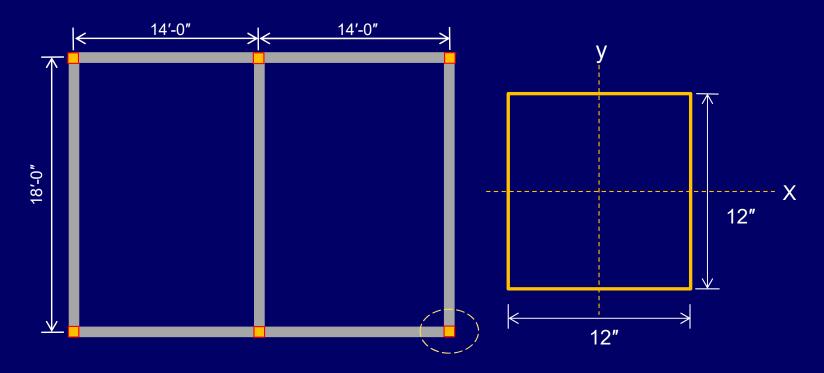
Calculate P_n using the following equation

$$\frac{1}{P_n} = \frac{1}{P_{nx0}} + \frac{1}{P_{ny0}} + \frac{1}{P_0}$$

Otherwise, adjust material properties (f'_c, f_y) or geometric properties (b, h), or the reinforcement area (A_s) , and repeat the above steps.

Example 3.11

• Using Reciprocal Load Method, *Determine* area of longitudinal reinforcement for the corner column highlighted in figure, to support $P_u = 185$ kip, $M_{ux} = 30$ ft.kip and $M_{uy} = 34$ ft.kip. Take $f'_c = 4$ ksi and $f_y = 60$ ksi.



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 1: Check Applicability of Method

$$P_n = \frac{P_u}{\emptyset} = \frac{185}{0.65} = 284.62 \text{ kip}$$

 $0.1A_g f'_c = 0.1 \times (12 \times 12) \times 4 = 57.6$ kip

 $P_n = 284.62 \text{ kip} > 0.1 A_g f'_c = 57.6 \text{ kip} \rightarrow \text{Reciprocal Load Method applies}$

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 2: Calculate Necessary Parameters

Bending about X axis	Bending about Y axis
$\gamma = \frac{h - 2d'}{h} = \frac{12 - 2(2.5)}{12} \approx 0.60$	$\gamma = \frac{b - 2d'}{b} = \frac{12 - 2(2.5)}{12} \approx 0.60$
$\frac{e_y}{b} = \frac{M_{ux}}{P_u b} = \frac{30}{185(1)} = 0.16$	$\frac{e_x}{h} = \frac{M_{uy}}{P_u h} = \frac{34}{185(1)} = 0.18$
$\rho = \frac{A_s}{bh} = \frac{4(0.44)}{12 \times 12} = 0.012$	
For f'_c = 4 ksi, f_y = 60 ksi and γ = 0.60, Graph A.5 of Nilson 14th Ed. applies	For f'_c = 4 ksi, f_y = 60 ksi and γ = 0.60, Graph A.5 of Nilson 14th Ed. applies

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

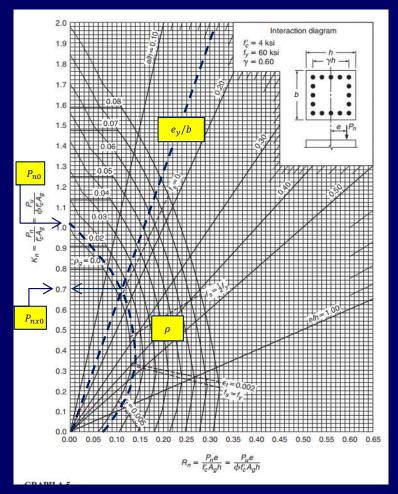
- Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
- Bending about X axis

From Grapgh, the curve ρ intersects Y axis at K_n = 1.09.

$$P_{n0} = K_n A_g f_c' = 1.09 \times 144 \times 4$$

 $P_{n0} = 627.84 \text{ kip}$

Again, from Grapgh, the intersecting point of curve ρ and the line e_y/b is $K'_n = 0.7$. $P_{nx} = 0.7 \times (144) \times 4$ $P_{nx} = 403.2$ kip



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

- Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
- Bending about Y axis

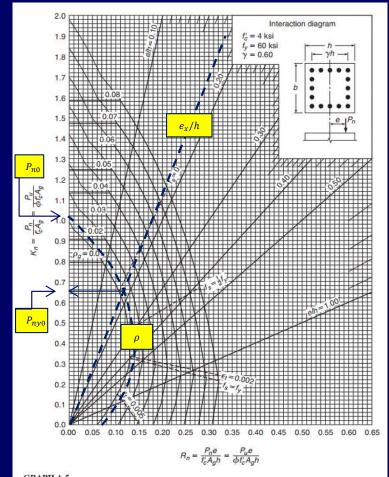
From Grapgh, the curve ρ intersects Y axis at K_n = 1.09.

$$P_{n0} = K_n A_g f_c' = 1.09 \times 144 \times 4$$

 $P_{n0} = 627.84 \text{ kip}$

Again, from Grapgh, the intersecting point of curve ρ and the line e_x/h is $K'_n = 0.67$. $P_{ny0} = 0.67 \times (144) \times 4$

$$P_{ny} = 385.92 \text{ kip}$$



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 4: Calculate Design Axial Capacity

Calculate P_n using the following equation

$$\frac{1}{P_n} = \frac{1}{P_{nx0}} + \frac{1}{P_{ny0}} - \frac{1}{P_0} = \frac{1}{403.2} + \frac{1}{385.92} - \frac{1}{627.84} = 0.003479$$

 $P_n = \frac{1}{0.003479} = 287.43$ kip

 $\emptyset P_n = 0.65 \times 287.43 = 186.82 \text{ kip} > P_u = 185 \text{ kip} \rightarrow \text{OK!}$

Prof. Dr. Qaisar Ali

2. Load Contour Method

 The load contour method is based on representing the failure surface of 3D interaction diagram by a family of curves corresponding to constant values of P_n. The equation is given below:

$$\left(\frac{M_{nx}}{M_{nx0}}\right)^{\alpha_1} + \left(\frac{M_{ny}}{M_{ny0}}\right)^{\alpha_2} \le 1$$

Where;

 $M_{nx} = P_n e_y$; $M_{nx0} = M_{nx} (when M_{ny} = 0)$

$$M_{ny} = P_n e_x$$
; $M_{ny0} = M_{ny}$ (when $M_{nx} = 0$)

 $\alpha_1 \& \alpha_2$ are exponents depending on column dimensions, amount and distribution of reinforcement, concrete cover and size of transverse ties or spiral.

Prof. Dr. Qaisar Ali

CE 5115: Advance Design of Reinforced Concrete Structures

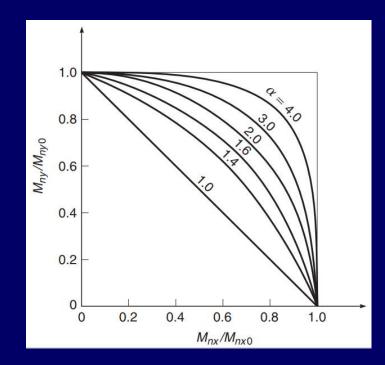
2. Load Contour Method

- Calculations reported by Bressler indicate that α falls in the range from 1.15 to 1.55 for square and rectangular columns.
- Values near the lower end of that range are the more conservative.

Design of RC Members Under Axial Loads with Biaxial Bending

2. Load Contour Method

- When $\alpha_1 = \alpha_2 = \alpha$, the shapes of such interaction contours are as shown for specific α values.
- For values of M_{nx}/M_{nxo} and M_{ny}/M_{nyo} , α can be determined from the given graph.



Prof. Dr. Qaisar Ali

Design of RC Members Under Axial Loads with Biaxial Bending

2. Load Contour Method

- Stepwise Procedure
 - Step 1: Check Applicability of Method

 $P_n < 0.1A_g f'_c \rightarrow \text{applies}$, otherwise not.

> Step 2: Calculate Necessary Parameters

Bending about X axis	Bending about Y axis	У
$\gamma = \frac{h - 2d'}{h}$	$\gamma = \frac{b - 2d'}{b}$	$e_x \rightarrow P_u$
$\frac{e_{\mathcal{Y}}}{b} = \frac{M_{ux}}{P_u b}$	$\frac{e_x}{h} = \frac{M_{uy}}{P_u h}$	e _y b
Assume $\rho = A_s/bh$		
Select relevant graph based on given f'_c , f_y and γ	Select relevant graph based on given f_c' , f_y and γ	<u>K</u>

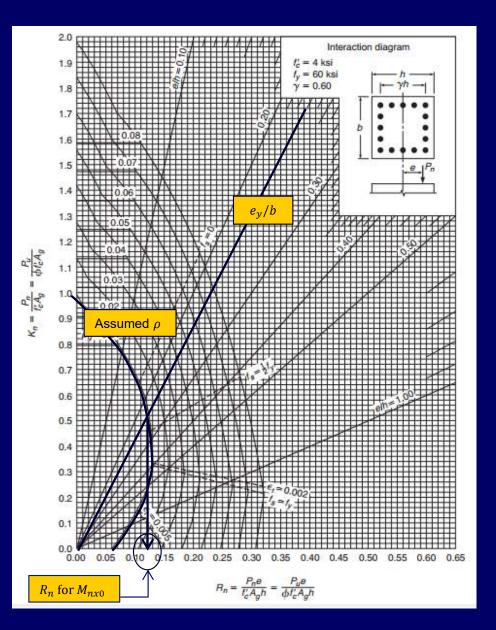
CE 5115: Advance Design of Reinforced Concrete Structures

Design of RC Members Under Axial Loads with Biaxial Bending

2. Load Contour Method

- Stepwise Procedure
 - Step 3: Calculate M_{nx0} and M_{ny0}
 - Bending about X axis

$$M_{nx0} = R_n A_g f_c' b$$

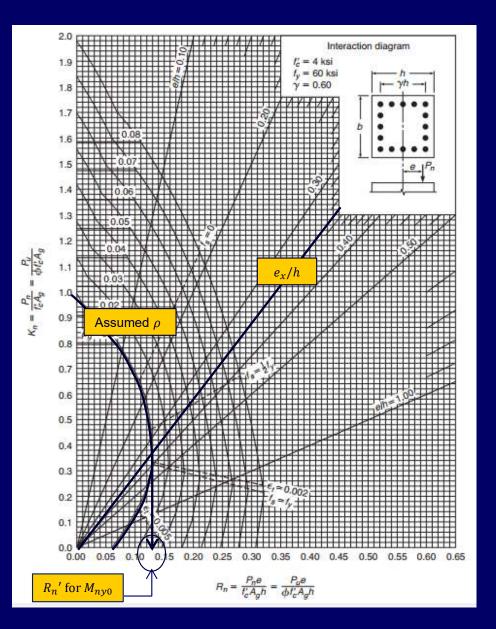


Design of RC Members Under Axial Loads with Biaxial Bending

2. Load Contour Method

- Stepwise Procedure
 - Step 3: Calculate M_{nx0} and M_{ny0}
 - Bending about Y axis

$$M_{ny0} = R_n' A_g f_c' h$$



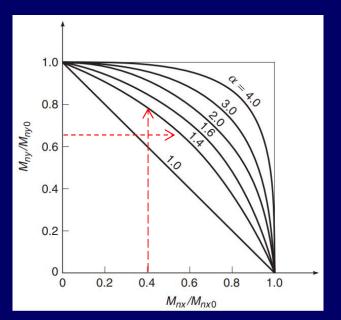
Design of RC Members Under Axial Loads with Biaxial Bending

- 1. Reciprocal Load Method
 - Stepwise Procedure
 - Step 4: Check the Capacity
 - Knowing the required values, select $\alpha_1 = \alpha_2 = \alpha$ from graph
 - Substitute values in Load contour equation

$$\left(\frac{M_{nx}}{M_{nx0}}\right)^{\alpha_1} + \left(\frac{M_{ny}}{M_{ny0}}\right)^{\alpha_2} \le 1$$

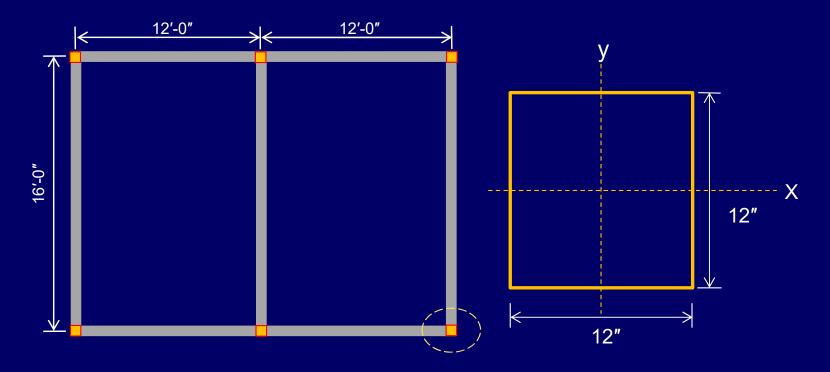
• If LHS $\leq 1 \rightarrow$ Design is OK!,

otherwise repeat the process.



Example 3.11

• Using Load Contour Method, *determine* area of longitudinal reinforcement for the corner column highlighted in figure, to support factored load of $P_u = 30$ kip, $M_{ux} = 20$ ft.kip and $M_{uy} = 30$ ft.kip. Take $f'_c = 4$ ksi and $f_v = 60$ ksi.



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 1: Check Applicability of Method

$$P_n = \frac{P_u}{\emptyset} = \frac{30}{0.65} = 46.15 \text{ kip}$$

 $0.1A_g f'_c = 0.1 \times (12 \times 12) \times 4 = 57.6$ kip

 $P_n = 46.15 \text{ kip} < 0.1 A_g f'_c = 57.6 \text{ kip} \rightarrow \text{Load Contour Method applies}$

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 2: Calculate Necessary Parameters

Bending about X axis	Bending about Y axis
$\gamma = \frac{h - 2d'}{h} = \frac{12 - 2(2.5)}{12} \approx 0.60$	$\gamma = \frac{b - 2d'}{b} = \frac{12 - 2(2.5)}{12} \approx 0.60$
$\frac{e_y}{b} = \frac{M_{ux}}{P_u b} = \frac{20}{30(1)} = 0.67$	$\frac{e_x}{h} = \frac{M_{uy}}{P_u h} = \frac{30}{30(1)} = 1$
$\rho = \frac{A_s}{bh} = \frac{4(0.44)}{12 \times 12} = 0.012$	
For f'_c = 4 ksi, f_y = 60 ksi and γ = 0.60, Graph A.5 of Nilson 14th Ed. applies	For f'_c = 4 ksi, f_y = 60 ksi and γ = 0.60, Graph A.5 of Nilson 14th Ed. applies

Design of RC Members Under Axial Loads with Biaxial Bending

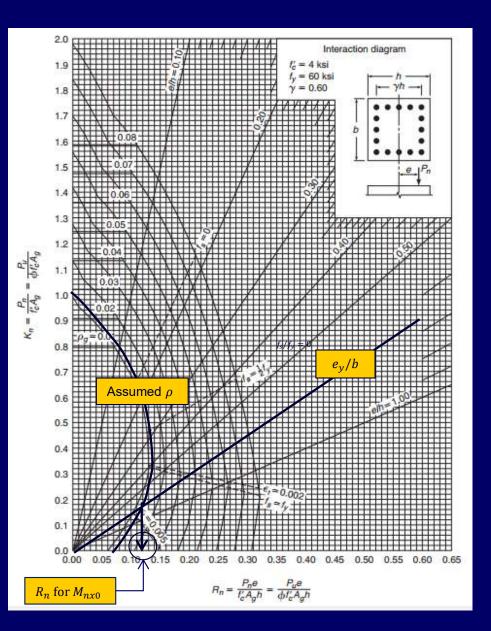
Solution

- Step 3: Calculate M_{nx0} and M_{ny0}
- Bending about X axis

$$M_{nx} = R_n A_g f_c' b$$

 $M_{nx} = 0.12 \times 144 \times 4 \times 12$

 $M_{nx0} = 829.44$ in. kip



Design of RC Members Under Axial Loads with Biaxial Bending

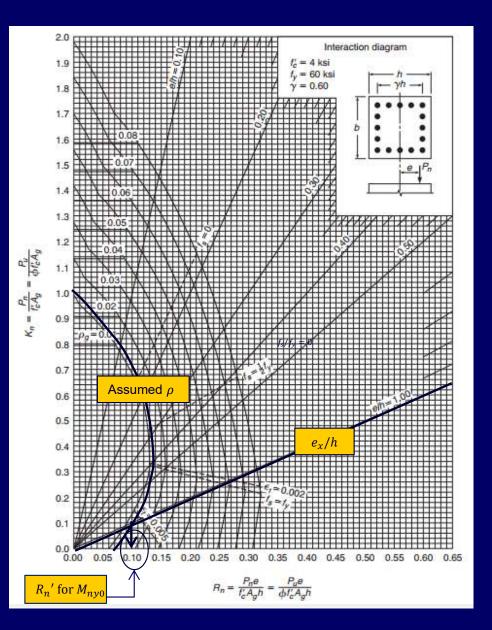
Solution

- Step 3: Calculate M_{nx0} and M_{ny0}
- Bending about Y axis

$$M_{ny0} = R_n' A_g f_c' h$$

 $M_{ny0} = 0.10 \times 144 \times 4 \times 12$

 $M_{ny0} = 691.2$ in.kip



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 4: Check Capacity

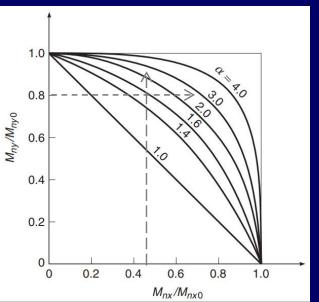
$$\frac{M_{nx}}{M_{nx0}} = \frac{(20/0.65) \times 12}{829.44} = 0.45 \quad \& \quad \frac{M_{ny}}{M_{ny0}} = \frac{(30/0.65) \times 12}{691.2} = 0.8$$

From grapgh, $\alpha_1 = \alpha_2 = \alpha = 1.6$

Substitute values in Load contour equation

$$\left(\frac{M_{nx}}{M_{nx0}}\right)^{\alpha_1} + \left(\frac{M_{ny}}{M_{ny0}}\right)^{\alpha_2} = (0.45)^{1.6} + (0.8)^{1.6}$$

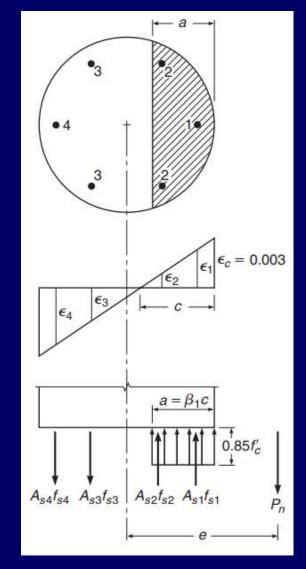
 $0.978 < 1 \rightarrow \mathbf{OK!}$



Design of RC Members Under Axial Loads with Biaxial Bending

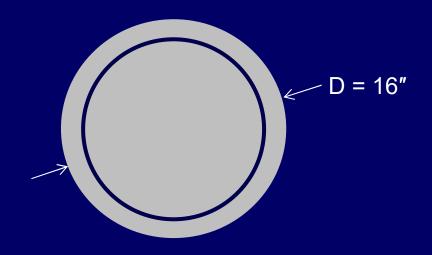
Behavior of Circular Columns

- The Strain distribution at ultimate load is shown in figure.
- The concrete compression zone subject to the equivalent rectangular stress distribution has the shape of a segment of a circle, shown shaded.



Example 3.12

• **Design** a circular column section shown in figure using approximate methods to support factored loads $P_u = 60$ kip, $M_{ux} = 20$ ft.kip and $M_{uy} = 30$ ft.kip. Take $f'_c = 4$ ksi and $f_y = 60$ ksi.



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 1: Check Applicability of Method

$$P_n = \frac{P_u}{\emptyset} = \frac{60}{0.65} = 92.3 \text{ kip}$$

$$0.1A_g f_c' = 0.1 \times \left(\frac{\pi \times 16^2}{4}\right) \times 4 = 80.42$$
 kip

 $P_n = 92.3 \text{ kip} > 0.1 A_g f'_c = 80.42 \text{ kip} \rightarrow \text{Reciprocal Load Method applies}$

Prof. Dr. Qaisar Ali

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 2: Calculate Necessary Parameters

Bending about X axis	Bending about Y axis
$\gamma = \frac{D - 2d'}{D} = \frac{12 - 2(2.5)}{12} \approx 0.70$	$\gamma = \frac{D - 2d'}{D} = \frac{16 - 2(2.5)}{16} \approx 0.70$
$\frac{e_y}{D} = \frac{M_{ux}}{P_u D} = \frac{20 \times 12}{60(16)} = 0.25$	$\frac{e_x}{D} = \frac{M_{uy}}{P_u D} = \frac{30 \times 12}{60(16)} = 0.36$
$\rho = \frac{A_s}{bh} = \frac{6(0.44)}{12 \times 12} = 0.018$	
For f'_c = 4 ksi, f_y = 60 ksi and γ = 0.70, Graph A.14of Nilson 14th Ed. applies	For $f_c' = 4$ ksi, $f_y = 60$ ksi and $\gamma = 0.70$, Graph A.14 of Nilson 14th Ed. applies

Design of RC Members Under Axial Loads with Biaxial Bending

Solution

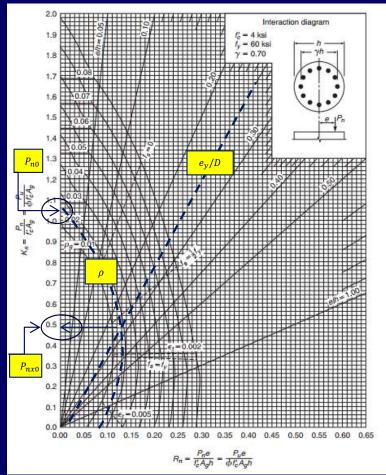
- Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
- Bending about X axis

From Grapgh, the curve ρ interest Y axis at $K_n = 1.08$.

$$P_{n0} = K_n A_g f_c' = 1.08 \times (201.06) \times 4$$

 $P_{n0} = 868.58 \text{ kip}$

Again, from Grapgh, the intersecting point of curve ρ and the line e_y/D is $K'_n = 0.48$. $P_{nx} = 0.48 \times (201.06) \times 4$ $P_{nx0} = 386.04$ kip



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

- Step 3: Calculate P_{n0}, P_{nx0} and P_{ny0}
- Bending about Y axis

From Grapgh, the curve ρ interest Y axis at $K_n = 1.08$.

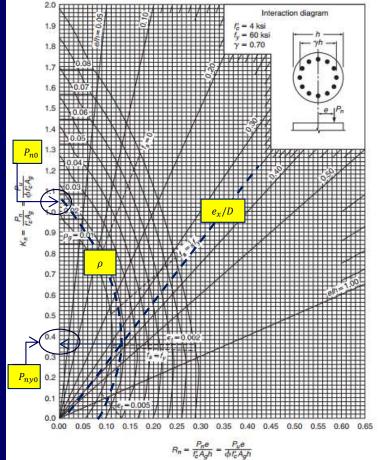
$$P_{n0} = K_n A_g f_c' = 1.08 \times (201.06) \times 4$$

 $P_{n0} = 868.58 \text{ kip}$

Again, from Grapgh, the intersecting point of curve ρ and the line e_x/D is $K'_n = 0.36$.

$$P_{ny0} = 0.36 \times (201.06) \times 4$$

$$P_{ny} = 289.52 \text{ kip}$$



Design of RC Members Under Axial Loads with Biaxial Bending

Solution

> Step 4: Calculate Design Axial Capacity

Calculate P_n using the following equation

$$\frac{1}{P_n} = \frac{1}{P_{nx0}} + \frac{1}{P_{ny0}} - \frac{1}{P_0} = \frac{1}{386.04} + \frac{1}{289.52} - \frac{1}{868.58} = 0.00489$$

 $P_n = \frac{1}{0.00489} = 204.5 \text{ kip}$

 $\emptyset P_n = 0.65 \times 204.5 = 132.93 \text{ kip} > P_u = 60 \text{ kip} \rightarrow \text{OK!}$

Prof. Dr. Qaisar Ali

References

- Reinforced Concrete Mechanics and Design (7th Ed.) by James MacGregor.
- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)
- Portland Cement Association (PCA 2002)

Derivation of c for Pure Bending Condition

As we know that;

$$P = C_c + C_s - T_s$$

For pure bending case, P = 0

$$T_{s} = C_{c} + C_{s}$$

$$A_{s2}f_{2} = 0.85f_{c}'ab + A_{s1}f_{s1} \implies a = \frac{A_{s2}f_{s2} - A_{s1}f_{s1}}{0.85f_{c}'b}$$

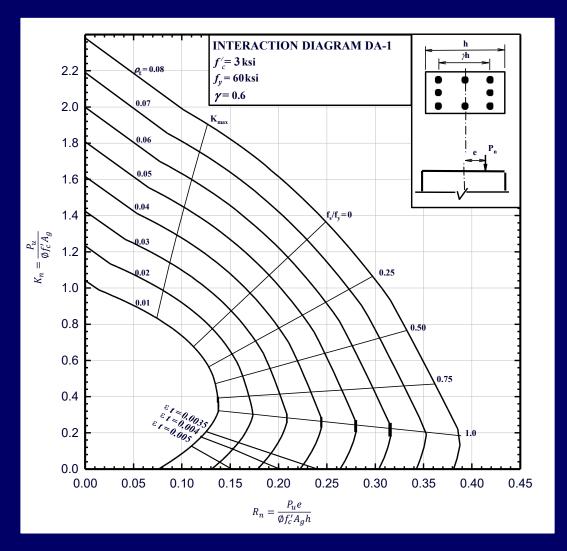
Here $A_{s1} = A_{s2} = A_s$, $f_{s1} = 87(1 - d'/c)$, $f_{s2} = f_y$ and a = 0.85c

Substituting the above values, we get

$$c = \frac{A_s \left[f_y - 87 \left(1 - \frac{d'}{c} \right) \right]}{0.72 f_c' b}$$

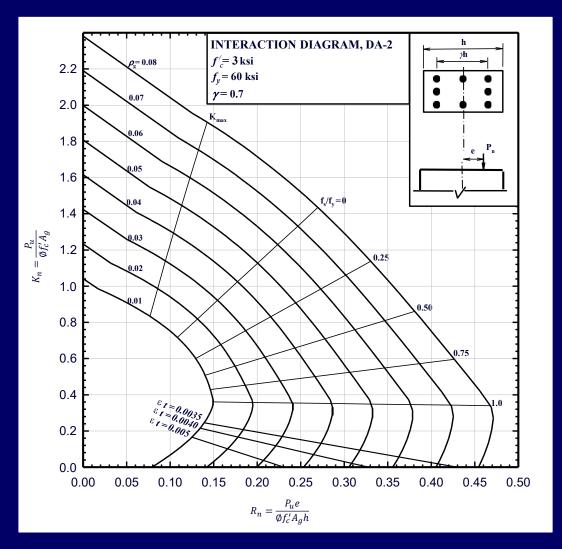
(This is an implicit equation, hence shall be solved by Equation Solver)

DESIGN AIDS (DA-1)



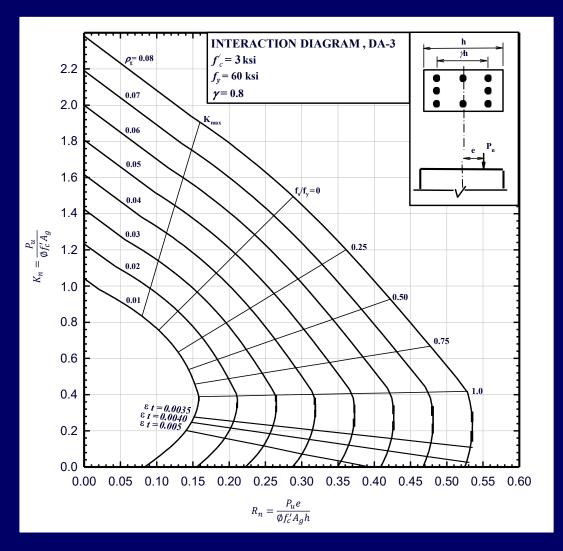
Prof. Dr. Qaisar Ali

DESIGN AIDS (DA-2)



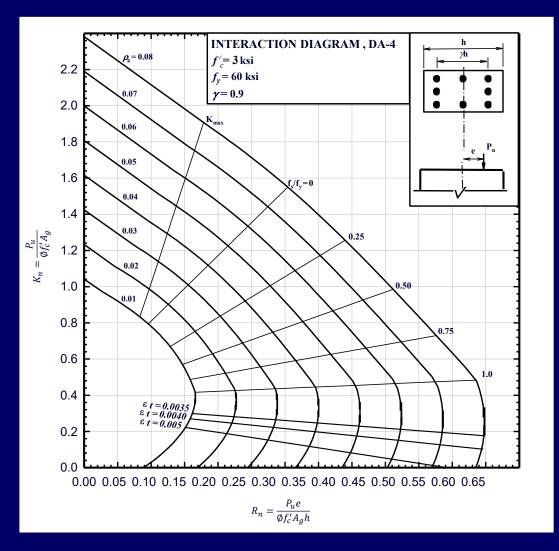
Prof. Dr. Qaisar Ali

DESIGN AIDS (DA-3)

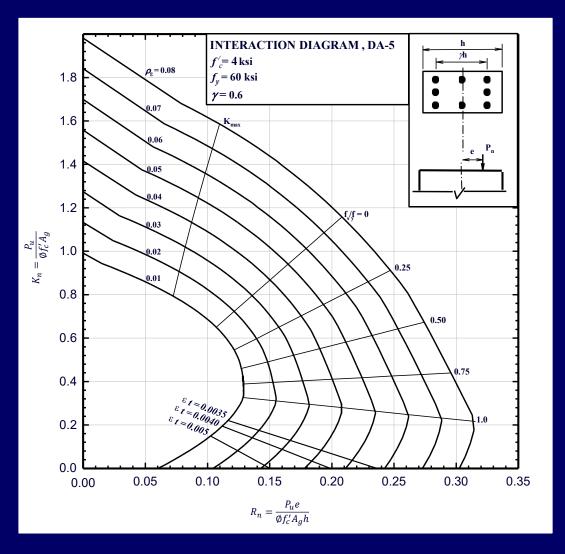


Prof. Dr. Qaisar Ali

DESIGN AIDS (DA-4)

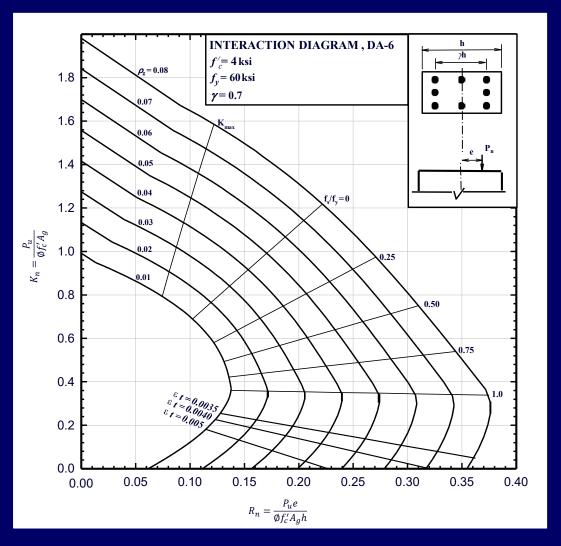


□ DESIGN AIDS (DA-5)



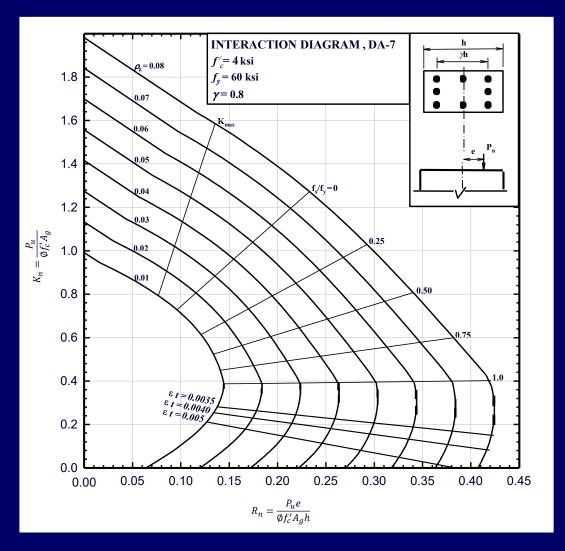
Prof. Dr. Qaisar Ali

□ DESIGN AIDS (DA-6)



Prof. Dr. Qaisar Ali

DESIGN AIDS (DA-7)



Prof. Dr. Qaisar Ali

□ DESIGN AIDS (DA-8)

