Lecture 08

Analysis of Reinforced Concrete Structures

By:
Prof. Dr. Qaisar Ali
Civil Engineering Department
UET Peshawar
drqaisarali@uetpeshawar.edu.pk
https://drqaisarali.com

Lecture Contents

- General
- Section - I : Gravity Load Analysis
- Point of Inflection Method
- Equivalent Frame Method
- Example 8.1
- Case Study 1

Lecture Contents

- Section - II : Lateral Load Analysis
- Portal Frame Method
- Case Study 2
- Limit Analysis
- Example 8.2
- Plastic Analysis
- Modern Analysis Tools
- References

General

\square Analysis Approaches

General

\square Analysis Approaches

- The approximate analysis methods such as ACl Coefficients and Direct Design Method have been discussed in detail in earlier lectures.
- In this lecture, another approximate method known as Point of Inflection Method will be briefly discussed.
- The exact analysis methods such as Slope Deflection, Moment Distribution and Stiffness method etc. have already been studied. The Equivalent Frame Analysis method will be discussed in detail in this lecture.

Gravity Load Analysis of RC Frames

Point of Inflection Method

\square Introduction

- In this method, points of inflection are located on the frame and the members are assumed separate determinate members at point of inflection.
- The individual members can be analyzed by statics as shown below.

Equivalent Frame Method

\square Introduction

- The equivalent frame method involves the representation of the threedimensional slab system by a series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames.
- The negative and positive moments so determined at the critical design sections of the frame are distributed to the slab sections.
- While no longer included in the latest editions of the ACl Code, a comprehensive explanation of this method is available in section 8.11 of the ACI 318-14.
- The stepwise procedure of this method is described next.

Equivalent Frame Method

\square Steps in Equivalent Frame Method

- The equivalent frame method involves the following three major steps.

1. Extraction of Frame from 3D Modal
2. Determination of Stiffnesses
3. Analysis of Frame using Moment Distribution Method

- Each step is comprehensively described in subsequent slides.

Equivalent Frame Method

\square Step 1: Extraction of Frame

- The initial step involves selecting or marking a 3D frame within the 3D building model.

Equivalent Frame Method

\square Step 1: Extraction of Frame

- The width of the frame is same as in DDM and length of the frame extends up to full length of 3D system and the full height of the building as shown below.

Equivalent Frame Method

\square Step 1: Extraction of Frame

- The selected 3D Frame is then extracted from the 3D Model. This is now called as equivalent frame.

Equivalent Frame Method

\square Step 1: Extraction of Frame

- The equivalent frame is transformed into a 2D frame by taking the effect of stiffnesses of laterally present members (slabs and beams).

Equivalent Frame Method

\square Step 1: Extraction of Frame

- The horizontal members of the converted 2D frame are called slabbeam members and the vertical members are called equivalent columns.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

- Stiffnesses are calculated and assigned to the slab-beam and equivalent columns.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

- K_{sb} represents the combined stiffness of slab and longitudinal beam and K_{ec} represents the modified column stiffness.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Slab Beam Member $\mathrm{K}_{\text {sb }}$
- The stiffness of slab beam $\left(\mathrm{K}_{\mathrm{sb}}=\mathrm{kEl}_{\mathrm{sb}} / \mathrm{l}\right)$ consists of combined stiffness of slab and any longitudinal beam present within.
- For a span, the k factor is a direct function of ratios c_{1} / I_{1} and c_{2} / I_{2}
- Tables are available for determination of k for various conditions of slab systems.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Slab Beam Member K_{sb} - Determination of k

Moment-Distribution Factors for Slabs without Drop Panels ${ }^{\text {a }}$							
FEM (uniform load w) $=M w \ell_{2} \ell_{1}^{2}$				$K($ stiffness $)=k E \ell_{2} t^{3} / 12 \ell_{1}$			
Carryover factor $=$ COF							
		$\left(c_{2} / \ell_{2}\right)$					
		0.00	0.05	0.10	0.15	0.20	0.25
0.00	M	0.083	0.083	0.083	0.083	0.083	0.083
	k	4.000	4.000	4.000	4.000	4.000	4.000
0.05	COF	0.500	0.500	0.500	0.500	0.500	0.500
	M	0.083	0.084	0.084	0.084	0.085	0.085
	k	4.000	4.047	4.093	4.138	4.181	4.222
0.10	COF	0.500	0.503	0.507	0.510	0.513	0.516
	M	0.083	0.084	0.085	0.085	0.086	0.087
	k	4.000	4.091	4.182	4.272	4.362	4.449
0.15	COF	0.500	0.506	0.513	0.519	0.524	0.530
	M	0.083	0.084	0.085	0.086	0.087	0.088
	k	4.000	4.132	4.267	4.403	4.541	4.680
0.20	COF	0.500	0.509	0.517	0.526	0.534	0.543
	M	0.083	0.085	0.086	0.527	0088	0089
	k	4.000	4.170	4.346	4.529	4.717	4.910
0.25	COF	0.500	0.511	0.522	0.532	0.543	0.554
	M	0.083	0.085	0.086	0.087	0.089	0.090
	k	4.000	4.204	4.420	4.648	4.887	5.138
	COF	0.500	0.512	0.525	0.538	0.550	0.563
$x=\left(1-c_{2} / \ell_{2}^{3}\right)$		1.000	0.856	0.729	0.613	0.512	0.421

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Slab Beam Member $\mathrm{K}_{\text {sb }}$ - Determination of $\mathrm{I}_{\text {sb }}$

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Equivalent Column K_{EC}
- Stiffness of equivalent column consists of stiffness of actual columns (above and below the slab) plus stiffness of torsional members.
- Mathematically,

$$
\begin{aligned}
& \frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}} \\
& K_{\text {wfere: }}=\frac{\sum K_{c} \times \sum K_{t}}{\sum K_{c}+\sum K_{t}}
\end{aligned}
$$

$\sum \mathrm{K}_{\mathrm{c}}=$ sum of flexural stiffnesses of columns above and below the slab.
$\sum \mathrm{K}_{\mathrm{t}}=$ Torsional stiffness of attached torsional members

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Equivalent Column K_{EC}
- General formula of flexural stiffness is given by $\mathrm{K}=\mathrm{kE} / / \mathrm{l}$
- Design aids are available from which value of k can be readily obtained for different values of $\left(t_{a} / t_{b}\right)$ and $\left(I_{u} / I_{c}\right)$.
- These design aids can be used if moment distribution method is used as method of analysis.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Equivalent Column K_{EC} - Determination of k

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses
\& Stiffness of Equivalent Column K_{EC} - Determination of k

t_{a} / t_{b}	l_{c} / l_{u}									
		1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45
2.0	$\stackrel{\sim}{k_{A B}}$	4.63	5.34	6.12	6.98	7.92	8.94	10.06	11.27	12.59
	$C_{A B}$	0.52	0.54	0.56	0.57	0.58	0.59	0.59	0.60	0.60
2.2	$k_{A B}$	4.65	5.37	6.17	7.05	8.02	9.08	10.24	11.49	12.85
	$C_{A B}$	0.52	0.54	0.55	0.56	0.57	0.58	0.58	0.59	0.59
2.4	$k_{A B}$	4.66	5.40	6.22	7.12	8.11	9.20	10.39	11.68	13.08
	$C_{A B}$	0.52	0.53	0.55	0.56	0.56	0.57	0.57	0.58	0.58
2.6	$k_{\text {AB }}$	4.67	5.42	6.26	7.18	8.20	9.31	10.53	11.86	13.29
	$C_{A B}$	0.52	0.53	0.54	0.55	0.56	0.56	0.56	0.57	0.57
2.8	$k_{A B}$	4.68	5.44	6.29	7.23	8.27	9.41	10.66	12.01	13.48
	$C_{A B}$	0.52	0.53	0.54	0.55	0.55	0.55	0.56	0.56	0.56
3.0	$k_{A B}$	4.69	5.46	6.33	7.28	8.34	9.50	10.77	12.15	13.65
	$C_{A B}$	0.52	0.53	0.54	0.54	0.55	0.55	0.55	0.55	0.55
3.5	$k_{A B}$	4.71	5.50	6.40	7.39	8.48	9.69	11.01	12.46	14.02
	$C_{A B}$	0.51	0.52	0.53	0.53	0.54	0.54	0.54	0.53	0.53
4.0	$k_{A B}$	4.72	5.54	6.45	7.47	8.60	9.84	11.21	12.70	14.32
	$C_{A B}$	0.51	0.52	0.52	0.53	0.53	0.52	0.52	0.52	0.52
4.5	$k_{A B}$	4.73	5.56	6.50	7.54	8.69	9.97	11.37	12.89	14.57
	$C_{A B}$	0.51	0.52	0.52	0.52	0.52	0.52	0.51	0.51	0.51
5.0	$k_{A B}$	4.75	5.59	6.54	7.60	8.78	10.07	11.50	13.07	14.77
	$C_{A B}$	0.51	0.51	0.52	0.52	0.51	0.51	0.51	0.50	0.49
6.0	$k_{A B}$	4.76	5.63	6.60	7.69	8.90	10.24	11.72	13.33	15.10
	$C_{A B}$	0.51	0.51	0.51	0.51	0.50	0.50	0.49	0.49	0.48
7.0	$k_{A B}$	4.78	5.66	6.65	7.76	9.00	10.37	11.88	13.54	15.34
	$C_{A B}$	0.51	0.51	0.51	0.50	0.50	0.49	0.48	0.48	0.47
8.0	$k_{A B}$	4.78	5.68	6.69	7.82	9.07	10.47	12.01	13.70	15.54
	$C_{A B}$	0.51	0.51	0.50	0.50	0.49	0.49	0.48	0.47	0.46
9.0	$k_{A B}$	4.80	5.71	6.74	7.89	9.18	10.61	12.19	13.93	15.83
	$C_{A B}$	0.50	0.50	0.50	0.49	0.48	0.48	0.47	0.46	0.45

Source: Reinforced Concrete Mechanics and Design $6^{\text {th }}$ Ed. Page \#1100

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Torsional Member K_{T}
- Torsional members (transverse members) provide moment transfer between the slab-beams and the columns.
- Assumed to have constant crosssection throughout their length.

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Torsional Member K_{T}
- The torsional stiffiness K_{t} of the torsional member is given as:

$$
K_{t}=\Sigma\left[\frac{9 E_{c s} C}{l_{2}\left(1-\frac{c_{2}}{l_{2}}\right)^{3}}\right]
$$

- If beams frame into the support in the direction of analysis, the torsional stiffness K_{t} needs to be increased.
$K_{t a}=\frac{K_{t} I_{s b}}{I_{s}}$
where;
$E_{c s}=$ modulus of elasticity of slab concrete;
$\mathrm{I}_{\mathrm{sb}}=\mathrm{I}$ of slab with beam;
$\mathrm{I}_{\mathrm{s}}=\mathrm{I}$ of slab without beam $=\mathrm{I}_{2} \mathrm{~h}^{3} / 12$

Equivalent Frame Method

\square Step 2: Determination of Stiffnesses

* Stiffness of Torsional Member K_{T} - Determination of C

Equivalent Frame Method

\square Step 3: Analysis of Frame using MDM

- The original derivation of EFM assumed that moment distribution would be the procedure used to analyze the slabs.
- In lieu of computer software, moment distribution is a convenient hand calculation method for analyzing partial frames in the Equivalent Frame Method.

Equivalent Frame Method

\square Step 3: Analysis of Frame using MDM
\& Distribution Factors for Slab Beam

$$
\begin{aligned}
& D F_{2 \rightarrow 1}=\frac{K_{s b 1}}{K_{s b 1}+K_{s b 2}+K_{e c}} \\
& D F_{2 \rightarrow 3}=\frac{K_{s b 2}}{K_{s b 1}+K_{s b 2}+K_{e c}}
\end{aligned}
$$

* Distribution Factors for Equivalent Column

$$
D F=\frac{K_{e c}}{K_{s b 1}+K_{s b 2}+K_{e c}}
$$

Equivalent Frame Method

\square Step 3: Analysis of Frame using MDM
\& Distribution of Unbalanced Moment to Columns

- Portion of Unbalanced Moment from Beam to Upper Column

$$
D F_{u c}=\frac{K_{c t}}{K_{c b}+K_{c t}}
$$

- Portion of Unbalanced Moment from Beam to Lower Column

$$
D F_{l c}=\frac{K_{c b}}{K_{c b}+K_{c t}}
$$

Equivalent Frame Method

\square Step 3: Analysis of Frame using MDM

* Arrangement of Live loads
- ACl 8.11.1 states that when the loading pattern is known, the equivalent frame shall be analyzed for that load.
- When LL $\leq 0.75 \mathrm{DL}$
- Maximum factored moment when Full factored LL on all spans
- Other cases
- Pattern live loading using 0.75 (Factored LL) to determine maximum factored moment.

Equivalent Frame Method

- Step 3: Analysis of Frame using MDM

* Arrangement of Live loads for Positive Moments

(1) For design moments in all spans with $\mathrm{L} \leq 3 / 4 \mathrm{D}$

Columns assumed fixed at remote ends
(2) For positive design moment in span AB $^{\prime}$

(3) For positive design moment in span BC^{\prime}

Equivalent Frame Method

\square Step 3: Analysis of Frame using MDM

* Arrangement of Live loads for Negative Moments

(4) Loading pattern for negative design moment at support A^{\prime}

(5) Loading pattern for negative design moment at support B^{\prime}

Equivalent Frame Method

S Summary of Analysis Steps in EFM
> Extract the 3D frame from the 3D structure.
> Extract a story from 3D frame for gravity load analysis.
> Identify EF members i.e., slab beam, torsional member and columns.
> Find stiffness (kEI/I) of each EF member using tables.
> Assign stiffnesses of each EF member to its corresponding 2D frame member.

Equivalent Frame Method

Summary of Analysis Steps in EFM
> Analyze the obtained 2D frame using Moment Distribution method of analysis to get longitudinal moments based on center-to-center span.
> Distribute slab-beam longitudinal moment laterally using lateral distribution procedures of DDM.
> Slab analysis can be done using DDM.

Example 8.1

\square Problem Statement

Analyze the three-story building whose typical floor is shown below, using Equivalent Frame Method.

Slab thickness: $7^{\prime \prime}$, Columns: $14^{\prime \prime} \times 14^{\prime \prime}$ and Beams: $14^{\prime \prime} \times 20^{\prime \prime}$

Example 8.1

\square Solution

> Step 1: Extraction of Frame

Slab thickness: $7^{\prime \prime}$, Columns: $14^{\prime \prime} \times 14^{\prime \prime}$ and Beams: $14^{\prime \prime} \times 20^{\prime \prime}$

Example 8.1

\square Solution

> Step 1: Extraction of Frame

Example 8.1

\square Solution

> Step 1: Extraction of Frame

- According to ACI 8.11 .2 .5 , it shall be permitted to assume that the far ends of columns built integrally with the structure are considered to be fixed for gravity load analysis.

Frame Extracted from at Intermediate Story

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
i. Slab-beam Stiffness Calculation

Slab beam stiffness ($\mathrm{K}_{\text {sb }}$)							
Span	I_{1} and c_{1}	I_{2} and c_{2}	c_{1} / I_{1}	$\mathrm{c}_{2} / \mathrm{I}_{2}$	k	$\mathrm{I}_{\text {sb }}$	$\mathrm{K}_{\mathrm{sb}}=\mathrm{kEl} \mathrm{s}_{\mathrm{sb}} / /_{1}$
AB	25' \& 14"	20' and 14"	0.0467	0.058	4.051	25844	349E
The remaining spans will have the same values as the geometry is same. Table A-20 (Reinforced concrete: Mechanics and Design, $3^{\text {rd }}$ Ed)							

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

$$
\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}}
$$

Calculation of K_{t}

Column location	I_{2}	c_{2}	$\mathrm{C}=\sum(1-0.63 \mathrm{x} / \mathrm{y}) \mathrm{x}^{3} \mathrm{y} / 3\left(\mathrm{in}^{4}\right)$	$\mathrm{K}_{\mathrm{t}}=\sum 9 \mathrm{E}_{\mathrm{cs}} \mathrm{C} /\left\{I_{2}\left(1-\mathrm{c}_{2} / I_{2}\right)^{3}\right\}$
C 2	20^{\prime}	$144^{\prime \prime}$	11208	$3792.63 \mathrm{E}_{\mathrm{cs}}$
C 1	20^{\prime}	$14^{\prime \prime}$	12190	$4295.98 \mathrm{E}_{\mathrm{cs}}$

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

$K_{c}=k \frac{E L_{c}}{\ell_{c}}$										
	ℓ_{c} / ℓ_{u}									
t_{a} / t_{b}		1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45
2.4	$k_{A B}$	4.66	5.40	6.22	7.12	8.11	9.20	10.39	11.68	13.08
	$C_{A B}$	0.52	0.53	0.55	0.56	0.56	0.57	0.57	0.58	0.58
2.6	$k_{A B}$	4.67	5.42	6.26	7.18	8.20	9.31	10.53	11.86	13.29
	$C_{A B}$	0.52	0.53	0.54	0.55	0.56	0.56	0.56	0.57	0.57
2.8	$k_{A B}$	4.68	5.44	6.29	7.23	8.27	9.41	10.66	12.01	13.48
	$C_{A B}$	0.52	0.53	0.54	0.55	0.55	0.55	0.56	0.56	0.56
3.0	$k_{A B}$	4.69	5.46	6.33	7.28	8.34	9.50	10.77	12.15	13.65
	$C_{A B}$	0.52	0.53	0.54	0.54	0.55	0.55	0.55	0.55	0.55
3.5	$k_{A B}$	4.71	5.50	6.40	7.39	8.48	9.69	11.01	12.46	14.02
	$C_{A B}$	0.51	0.52	0.53	0.53	0.54	0.54	0.54	0.53	0.53
4.0	$k_{A B}$	4.72	5.54	6.45	7.47	8.60	9.84	11.21	12.70	14.32
	$C_{A B}$	0.51	0.52	0.52	0.53	0.53	0.52	0.52	0.52	0.52
4.5	$k_{A B}$	4.73	5.56	6.50	7.54	8.69	9.97	11.37	12.89	14.57
	$\epsilon_{\text {AB }}$	-0.51-	-0-52	-0.52	-0.52	0.52	-0.52	-9.51	- 0.51	- 0.51 ,
5.0	$k_{A B}$	4.75	5.59	6.54	7.60	8.78	10.07	11.50	13.07	14.77
	$C_{A B}$	0.51	0.51	0.52	0.52	0.51	0.51	0.51	0.50	0.49
16.0	$k_{A B}$	4.76	5.63	6.60	7.69	8.90	10.24	11.72	13.33	15.10
${ }^{1} 7.0$	$C_{A B}$	0.51	0.51	0.51	0.51	0.50	0.50	0.49	0.49	0.48
	$\bar{k}_{A B}$	4.78	5.66	6.65	$7.7 \overline{6}$	$\overline{9} . \overline{0} 0$	${ }^{1} 10.37$	$\overline{1} 1.8 \overline{8}$	13.54	15.34^{-}
	$C_{A B}$	0.51	0.51	0.51	0.50	0.50	0.49	0.48	0.48	0.47
8.0	$k_{A B}$	4.78	5.68	6.69	7.82	9.07	10.47	12.01	13.70	15.54
	$C_{A B}$	0.51	0.51	0.50	0.50	0.49	0.49	0.48	0.47	0.46
9.0	$k_{A B}$	4.80	5.71	6.74	7.89	9.18	10.61	12.19	13.93	15.83
	$C_{A B}$	0.50	0.50	0.50	0.49	0.48	0.48	0.47	0.46	0.45

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

$$
\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{\mathbf{1}}{\sum K_{t}}
$$

Calculation of $\sum \mathrm{K}_{\mathrm{c}}$ for Column $\mathbf{C} 2$

Column location	$I_{\text {c }}$	I_{u}	I_{c} / I_{u}	$\begin{gathered} I_{c}\left(\mathrm{in}^{4}\right) \\ 14^{\prime \prime} \times 14^{\prime \prime} \text { column } \end{gathered}$	t_{a} / t_{b}	k_{AB}	$\mathrm{K}_{\mathrm{c}}=\mathrm{k}\left(\mathrm{E} \mathrm{l}_{\mathrm{c}} / l_{\mathrm{c}}\right)$
$\begin{gathered} \mathrm{C} 2 \\ \text { (bottom) } \end{gathered}$	$\begin{gathered} 10.5^{\prime} \\ \left(126^{\prime \prime}\right) \end{gathered}$	106"	1.20	$14 \times 143 / 12=3201$	16.5/3.5 $=4.71$	7.57	$192 \mathrm{E}_{\text {cc }}$
C2 (top)	$\begin{gathered} 10.5^{\prime} \\ \left(126^{\prime \prime}\right) \end{gathered}$	106"	1.20	$14 \times 143 / 12=3201$	$3.5 / 16.5=0.21$	5.3	$135 \mathrm{E}_{\text {cc }}$
$\Sigma \mathrm{K}_{\mathrm{c}}=192 \mathrm{E}_{\mathrm{cc}}+135 \mathrm{E}_{\mathrm{cc}}=327 \mathrm{E}_{\mathrm{cc}}$							

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

$$
\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{\mathbf{1}}{\sum K_{t}}
$$

Calculation of $\sum \mathrm{K}_{\mathrm{c}}$ for Column $\mathbf{C 1}$

Column location	$I_{\text {c }}$	I_{u}	I_{c} / I_{u}	$\begin{gathered} I_{c}\left(\mathrm{in}^{4}\right) \\ 14^{\prime \prime} \times 14^{\prime \prime} \text { column } \end{gathered}$	t_{a} / t_{b}	k_{AB}	$\mathrm{K}_{\mathrm{c}}=\mathrm{k}\left(\mathrm{E} \mathrm{l}_{\mathrm{c}} / l_{\mathrm{c}}\right)$
$\begin{gathered} \mathrm{C} 1 \\ \text { (bottom) } \end{gathered}$	$\begin{gathered} 10.5^{\prime} \\ \left(126^{\prime \prime}\right) \end{gathered}$	106"	$\begin{gathered} 126 / 106 \approx \\ 1.20 \end{gathered}$	$14 \times 143 / 12=3201$	16.5/3.5 $=4.71$	7.57	$192 \mathrm{E}_{\text {cc }}$
$\begin{gathered} \text { C1 } \\ \text { (top) } \end{gathered}$	$\begin{aligned} & 10.5^{\prime} \\ & \left(126^{\prime \prime}\right) \end{aligned}$	106"	$\begin{gathered} 126 / 106 \approx \\ 1.20 \end{gathered}$	$14 \times 143 / 12=3201$	$3.5 / 16.5=0.21$	5.3	$135 \mathrm{E}_{\text {cc }}$
$\Sigma \mathrm{K}_{\mathrm{c}}=192 \mathrm{E}_{\mathrm{cc}}+135 \mathrm{E}_{\mathrm{cc}}=327 \mathrm{E}_{\mathrm{cc}}$							

Example 8.1

\square Solution

> Step 2: Determination of Stiffnesses

ii. Equivalent Column Stiffness Calculation

For column C2 (exterior column), we have
$\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}}=\frac{1}{327 E_{c c}}+\frac{1}{3792.63 E_{c s}}$
Because the slab and the columns have the same strength concrete, $\mathrm{E}_{\mathrm{cc}}=\mathrm{E}_{\mathrm{cs}}=\mathrm{E}_{\mathrm{c}}$. Therefore,
$K_{\text {ec }}=301 E_{c}$
Similarly, for column C1 (interior column), we get

$$
\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}}=\frac{1}{327 E_{c c}}+\frac{1}{4295.98 E_{c s}} ; \quad K_{e c}=303 E_{c}
$$

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

- As the ground story is same as 1st one, therefore the stiffness calculated shall also be assigned to ground story.
- For the top story, the slab beam stiffness will be same as lower stories. However, the equivalent stiffness of the top story column is computed next.

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

Calculation of $\sum \mathrm{K}_{\mathrm{c}}$ for Column $\mathbf{C 2}$ (Top Story)							
Column location	I_{0}	I_{u}	I_{c} / I_{u}	$\begin{gathered} \mathrm{I}_{\mathrm{c}}^{(\text {(in })^{4}} \\ 14^{\prime \prime} \times 14^{\prime \prime} \text { columm } \end{gathered}$	t_{a} / t_{b}	$\mathrm{k}_{\text {AB }}$	$\mathrm{K}_{\mathrm{c}}=\mathrm{k}\left(\mathrm{E} / \mathrm{I}_{\mathrm{c}} / \mathrm{I}_{\mathrm{c}}\right)$
$\underset{\text { (bottom) }}{\mathrm{C} 2}$	$\begin{aligned} & 10.5^{\prime} \\ & \left(126^{\prime \prime}\right) \end{aligned}$	100"	$\begin{gathered} 126 / 106 \\ 1.20 \end{gathered}$	$14 \times 14^{3} / 12=3201$	$16.5 / 3.5=4.71$	7.57	$192 \mathrm{E}_{\mathrm{cc}}$
$\Sigma \mathrm{K}_{\mathrm{c}}=192 \mathrm{E}_{\mathrm{cc}}$							

Example 8.1

\square Solution
> Step 2: Determination of Stiffnesses
ii. Equivalent Column Stiffness Calculation

For column C2, we have
$\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}}=\frac{1}{192 E_{c c}}+\frac{1}{3792.63 E_{c s}}$
Because the slab and the columns have the same strength concrete, $E_{c c}=E_{c s}=E_{c}$. Therefore,
$K_{\text {ec }}=182 E_{c}$
Similarly, for column C1, we get

$$
\frac{1}{K_{e c}}=\frac{1}{\sum K_{c}}+\frac{1}{\sum K_{t}}=\frac{1}{92 E_{c c}}+\frac{1}{4295.98 E_{c s}} ; \quad K_{e c}=183 E_{c}
$$

Example 8.1

\square Solution

> Step 2: Determination of Stiffnesses
\& Equivalent Frame

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads (interior story).

Joint	A			B			c			D			E		
CarryOver			0.5034			0.5034			0.5034			0.5034			
DF	0.000	0.463	0.537	0.348	0.303	0.348	0.348	0.303	0.348	0.348	0.303	0.348	0.537	0.463	0.000
	slab	Column	Slab												
FEM	0.000	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	0.000
Bal	0.000	-42.532	-49.270	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	/49.270	42.532	0.000
Carry over			0.000	-24.804		0.000	${ }_{0.000}$		0.000	${ }^{+0.000}$		24.804	+ 0.000		
Bal	0.000	0.000	0.000	/8.638	7.527	8.638	-0.000	0.000	0.000	-8.638	-7.527	-8.638	$\bigcirc 0.000$	0.000	0.000
Carry over			4.349	${ }^{+} 0.000$		$0.000-$	+ 4.349		-4.349-	+ 0.000		0.000	+4.349		
Bal	0.000	-2.015	-2.334	0.000	0.000	0.000	\%000	0.000	0.000	0.000	0.000	0.000	/2.334	2.015	0.000
Carry over			0.000	${ }^{-1.175}$		$0.000-$	$\square 0.000$		$0.000-$	${ }^{+} 0.000$		1.175	+ 0.000		
Bal	0.000	0.000	0.000	$\bigcirc 0.409$	0.357	0.409	0.000	0.000	0.000	-0.409	-0.357	-0.409	0.000	0.000	0.000
Carry over			0.206	± 0.000		0.000	${ }^{+0.206}$		-0.206	${ }^{+} 0.000$		$0.000-$	+ 0.206		
Bal	0.000	-0.095	-0.111	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.111	0.095	0.000
Carry over			0.000	${ }^{1}-0.056$		0.000^{-}	${ }_{0.000}$		0.000^{-1}	${ }^{4} 0.000$		0.056	${ }^{+0.000}$		
Bal	0.000	0.000	0.000	$\checkmark 0.019$	0.017	0.019	/0.000	0.000	0.000	-0.019	-0.017	-0.019	0.000	0.000	0.000
Carry over			0.010	+ 0.000		$0.000-$	± 0.010		-0.010-	${ }^{+0.000}$		0.000	${ }^{+0.010}$		
Bal	0.000	-0.005	-0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.005	0.000
Carry over			0.000	-0.003		0.000	0.000		0.000	0.000		0.003	0.000		
Bal	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.001	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	-44.647	44.647	-108.771	7.901	100.870	-87.237	0.000	87.237	-100.870	-7.901	108.771	-44.647	44.647	0.000

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads (top storey).

Joint	A			B			C			D			E		
CarryOver			0.5034			0.5034			0.5034			0.5034			
DF	0.000	0.344	0.656	0.396	0.209	0.396	0.396	0.209	0.396	0.396	0.209	0.396	0.656	0.344	0.000
	Slab	Column	Slab												
FEM	0.000	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	91.802	-91.802	0.000	0.000
Bal	0.000	-31.611	-60.191	0.000	0.000	0.000	0.000	0.000	0.000	/ 0.000	0.000	0.000	/60.191	31.611	0.000
Carry over			$0.000-$	- -30.301		$0.000{ }^{-}$	${ }^{4} 0.000$		0.000^{-}	0.000		30.301	+ 0.000		
Bal	0.000	0.000	0.000	11.985	6.330	11.985	0.000	0.000	0.000	-11.985	-6.330	-11.985	-0.000	0.000	0.000
Carry over			6.034^{2}	${ }^{+} 0.000$		$0.000-$	+6.034		-6.034	+ 0.000		0.000	+ -6.034		
Bal	0.000	-2.078	-3.956	0.000	0.000	0.000	0.000	0.000	$0.000 \backslash$	0.000	0.000	$0.000 \backslash$	/3.956	2.078	0.000
Carry over			0.000^{2}	-1.992		$0.000-$	${ }^{+0.000}$		0.000	+ 0.000		1.992	+ 0.000		
Bal	0.000	0.000	$0.000 \backslash$	0.788	0.416	0.788	0.000	0.000	0.000	-0.788	-0.416	-0.788	- 0.000	0.000	0.000
Carry over			0.397 L	+ 0.000		0.000	+ 0.397		-0.397	+ 0.000		0.000	- -0.397		
Bal	0.000	-0.137	-0.260	- 0.000	0.000	0.000	0.000	0.000	0.000	/ 0.000	0.000	0.000	-0.260	0.137	0.000
Carry over			$0.000 \sim$	- -0.131		$0.000-$	${ }^{+0.000}$		0.000^{-}	0.000		0.131	$+0.000$		
Bal	0.000	0.000	0.000	-0.052	0.027	0.052	0.000	0.000	0.000	-0.052	-0.027	-0.052	0.000	0.000	0.000
Carry over			0.026	+0.000		0.000 -	${ }^{+} 0.026$		-0.026	+ 0.000		0.000	+-0.026		
Bal	0.000	-0.009	-0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.017	0.009	0.000
Carry over			0.000	-0.009		0.000	0.000		0.000	0.000		0.009	0.000		
Bal	0.000	0.000	0.000	0.003	0.002	0.003	0.000	0.000	0.000	-0.003	-0.002	-0.003	0.000	0.000	0.000
Carry over			0.002	0.000		0.000	0.002		-0.002	0.000		0.000	-0.002		
Bal	0.000	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000
Carry over			0.000	-0.001		0.000	0.000		0.000	0.000		0.001	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Carry over			0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000		
Bal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.000	-33.835	33.835	-111.406	6.776	104.631	-85.344	0.000	85.344	-104.631	-6.776	111.406	-33.835	33.835	0.000

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads (values at centerline).

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM * Analysis Results for Dead Loads

E-W Interior Frame Analysis (Top Story)

Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment \%age factor (Graph A4)	Column Strip slab Moment (CSSM) 0.15CSM	Column strip Beam Moment (BM) (B.85CSM	Middle Strip slab Moment
	Ext -	34	0.93	5	27	2.38
	+	67	0.8	8	46	13.4
	Int -	111	0.8	13	75	22.2
$25^{\prime}-0^{\prime \prime}$ (Interior)	-	105	0.8	13	71	21
	+	42	0.8	5	29	8.4
	-	85	0.8	10	58	17

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM * Analysis Results for Dead Loads

E-W Interior Frame Analysis (Intermediate Story)

Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment \%age factor (Graph A4)	Column Strip slab Moment (CSSM) 0.15CSM	Column strip Beam Moment (BM) (0.85CSM	Middle Strip slab Moment
	Ext -	45	0.93	6	36	3.15
	+	64	0.8	8	44	12.8
	Int-	109	0.8	13	74	21.8
25'-0" (Interior)	-	101	0.8	12	69	20.2
	+	43	0.8	5	29	8.6
	-	87	0.8	10	59	17.4

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads
- Analysis of columns for DL (factors for moment distribution)

The computed unbalanced longitudinal moments shall be transferred to columns and shall be distributed to top and bottom columns as follows:
$D F_{u c}=\frac{K_{c t}}{K_{c b}+K_{c t}} \quad$ (Portion of unbalanced moment to upper column)
$D F_{u c}=\frac{K_{c b}}{K_{c b}+K_{c t}} \quad$ (Portion of unbalanced moment to lower column)

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads
- Analysis of columns for DL (factors for moment distribution)

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Dead Loads
- Analysis of columns for DL

$34 \times 1.00=34 \quad 6 \times 1.00=6$			$\begin{aligned} & \mathrm{K}_{\mathrm{cb} 3}=192 \mathrm{E} \\ & \mathrm{~K}_{\mathrm{c} 12}=135 \mathrm{E} \end{aligned}$
$V_{45 \times 0.59=27}$	$8 \times 0.41=3.3$	$\begin{aligned} & \mathrm{K}_{\mathrm{cb3}} /\left(\mathrm{K}_{\mathrm{cb3}}=1.00\right. \\ & \mathrm{K}_{\mathrm{ct} 2} /\left(\mathrm{K}_{\mathrm{cb} 2}+\mathrm{K}_{\mathrm{cb} 2}\right)=0.41 \end{aligned}$	
	$8 \times 0.41=3.3$	$\begin{aligned} & \mathrm{K}_{\mathrm{cb} 2} /\left(\mathrm{K}_{\mathrm{cl} 2}+\mathrm{K}_{\mathrm{cb} 2}\right)=0.59 \\ & \mathrm{~K}_{\mathrm{ct1}} /\left(\mathrm{K}_{\mathrm{ct1}}+\mathrm{K}_{\mathrm{cb} 1}\right)=0.41 \end{aligned}$	$K_{\text {cb2 }}=192 \mathrm{E}$ $\mathrm{K}_{\mathrm{ct1}}=135 \mathrm{E}$
$45 \times 0.41=18.45 \varlimsup_{\mathrm{C} 2} 8 \times 0.59=4.7$		$\mathrm{K}_{\text {cbi }} 1\left(\mathrm{~K}_{\text {cti }}+\mathrm{K}_{\text {cbi }}\right)=0.59$	$\mathrm{K}_{\mathrm{cb} 1}=192 \mathrm{E}$

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads
- Distribution of Moments to Slab and Beam

E-W Interior Frame Analysis (Top Story)						
Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment \%age factor (Graph A4)	Column Strip slab Moment $(C S S M)=$ 0.15CSM	Column strip Beam Moment $(B M)=0.85 C S M$	Middle Strip slab Moment
$\begin{gathered} 25^{\prime}-0^{\prime \prime} \\ \text { (Exterior) } \end{gathered}$	Ext -	56	0.93	7.8	44	3.92
	+	111	0.8	13.3	75	22.2
	Int-	183	0.8	22.0	124	36.6
$\begin{aligned} & 25^{\prime}-0^{\prime \prime} \\ & \text { (Interior) } \end{aligned}$	-	172	0.8	20.6	117	34.4
	+	69	0.8	8.3	47	13.8
	-	140	0.8	16.8	95	28

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads
- Distribution of Moments to Slab and Beam

E-W Interior Frame Analysis (Interior Story)

Length	Longitudinal moment section	Longitudinal moments (LM)	Column Strip Moment \%age factor (Graph A4)	Column Strip slab Moment (CSSM) = 0.15CSM	Column strip Beam Moment $(B M)=0.85 C S M$	Middle Strip slab Moment Moment
$\begin{gathered} 25^{\prime}-0 \prime \prime \\ \text { (Exterior) } \end{gathered}$	Ext -	73	0.93	10.2	58	5.11
	+	105	0.8	12.6	71	21
	Int -	179	0.8	21.5	122	35.8
$\begin{aligned} & 25^{\prime}-0^{\prime \prime} \\ & \text { (Interior) } \end{aligned}$	-	166	0.8	19.9	113	33.2
	+	70	0.8	8.4	48	14
	-	144	0.8	17.3	98	28.8

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads
- Analysis of columns for LL (factors for moment distribution)

The computed unbalanced longitudinal moments shall be transferred to columns and shall be distributed to top and bottom columns as follows:
$D F_{u c}=\frac{K_{c t}}{K_{c b}+K_{c t}} \quad$ (Portion of unbalanced moment to upper column)
$D F_{u c}=\frac{K_{c b}}{K_{c b}+K_{c t}} \quad$ (Portion of unbalanced moment to lower column)

Example 8.1

\square Solution

> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads
- Analysis of columns for LL (factors for moment distribution)

| 156 |
| :--- | :--- | :--- | :--- |

Example 8.1

\square Solution
> Step 3: Analysis of Frame Using MDM

* Analysis Results for Live Loads
- Analysis of columns for LL (factors for moment distribution)

$56 \times 1.00=56 \quad 151 \times 1.00=15$		
	$\begin{aligned} & \mathrm{K}_{\mathrm{cb} 3}=192 \mathrm{E} \\ & \mathrm{~K}_{\mathrm{ct} 2}=135 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{cb} 3} / \mathrm{K}_{\mathrm{cb} 3}=1.00 \\ & \mathrm{~K}_{\mathrm{ct} 2}\left(\mathrm{~K}_{\mathrm{cc} 2}+\mathrm{K}_{\mathrm{cb} 2}\right)=0.41 \end{aligned}$
$\left.73 \times 0.41=30.00 / \begin{array}{c}73 \times 0.59=43 \\ 151 \times 0.41=62\end{array}\right) / 151 \times 0.59=89$	$\begin{aligned} & K_{\mathrm{cb} 2}=192 \mathrm{E} \\ & \mathrm{~K}_{\mathrm{ct1}}=135 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{cb} 2} /\left(\mathrm{K}_{\mathrm{c} 2}+\mathrm{K}_{\mathrm{c} 2} 2\right)=0.59 \\ & \mathrm{~K}_{\mathrm{ct1}} /\left(\mathrm{K}_{\mathrm{c} 11}+\mathrm{K}_{\mathrm{cc} 1}\right)=0.41 \end{aligned}$
$73 \times 0.41=30.00 / 73 \times 0.59=43 \times 1 \times 0.59=89$	$\mathrm{K}_{\mathrm{cb} 1}=192 \mathrm{E}$	$\mathrm{K}_{\text {cb }} 1\left(\mathrm{~K}_{\text {ct }}+\mathrm{K}_{\text {cb } 1}\right)=0.59$
$\mathrm{C} 2 \quad \mathrm{C} 1$		1

Case Study 1

Comparison of the Results of EFM, ACI Goefficient Method, DDM \& SAP 2D Model with respect to SAP2000 3D Line Model

Case Study 1

\square Dead Load Bending Moment in Beams

Case Study 1

\square Dead Load Bending Moment in Columns

Case Study 1

\square Live Load Bending Moment in Beams

Case Study 1

\square Live Load Bending Moment in Columns

Lateral Load Analysis

 of RC Frames
General

\square ACI Requirements for Lateral Load Analysis

- Unlike ACI section 8.9 which allows separate floor analysis for gravity loads, ACI R 8.9 states that for lateral load analysis, a full frame from top to bottom must be considered.

General

\square Methods for lateral load Analysis

Portal Frame Method is discussed next

Portal Frame Method

\square Introduction

- This is a method used to estimate the effects of side sway due to lateral forces acting on multistory building frame.
- This method is specialized form of point of inflection method.

Portal Frame Method

\square Prepositions in Portal Frame Method

1. The total horizontal shear in all columns of a given story is equal and opposite to the sum of all horizontal loads acting above that story.

- This preposition follows from the requirement that horizontal forces be in equilibrium at any level.

$$
\begin{aligned}
& \mathrm{H}_{31}+\mathrm{H}_{32}=\mathrm{F}_{3} \\
& \mathrm{H}_{21}+\mathrm{H}_{22}=\mathrm{F}_{3}+\mathrm{F}_{2} \\
& \mathrm{H}_{11}+\mathrm{H}_{12}=\mathrm{F}_{3}+\mathrm{F}_{2}+\mathrm{F}_{1}
\end{aligned}
$$

Portal Frame Method

\square Prepositions in Portal Frame Method

2. The horizontal shear is the same in both exterior columns. The horizontal shear in each interior column is twice that of exterior column.

- This preposition is due to the fact that interior columns are generally more rigid than exterior columns (interior column with larger axial load will require larger cross section).
$6 \mathrm{H}_{3}=\mathrm{F}_{3}$ or $\mathrm{H}_{3}=\mathrm{F}_{3} / 6$
$\mathrm{H}_{3}=\mathrm{F}_{3} / 2 \mathrm{n}$
and $2 \mathrm{H}_{3}=\mathrm{F}_{3} / \mathrm{n}$

Where $\mathrm{n}=$ no. of bays

Portal Frame Method

\square Prepositions in Portal Frame Method

3. The inflection points of all members (columns and beams) are located midway between the joints except for bottom story.

Portal Frame Method

\square Steps in Portal Frame Method
> Step 1: Location of Points of Inflection (preposition 3)

Portal Frame Method

\square Steps in Portal Frame Method
$>$ Step 2: Determination of Column Shears (prepositions 2 \& 3)

Portal Frame Method

\square Steps in Portal Frame Method
> Step 3: Determination of Column Moments from Statics

Portal Frame Method

\square Steps in Portal Frame Method
$>$ Step 4: Determination of Beam Moments from Statics

- Beam moments at a joint can be determined from equilibrium. The beam moments to the left (M_{BL}) and right (M_{BR}) of a joint can be determined from the following formulae.
$M_{B L}=\frac{\sum M_{c o l}}{m}$
$M_{B R}=\frac{\sum M_{c o l}}{m}$
Where;
- $m=$ number of connecting beams at a joint.
- $\sum \mathrm{M}_{\mathrm{col}}=$ summation of column moments at a joint.

Portal Frame Method

\square Steps in Portal Frame Method
> Step 4: Determination of Beam Moments from Statics

Portal Frame Method

\square Steps in Portal Frame Method
$>$ Step 5: Determination of Beam Shear from Statics

Portal Frame Method

\square Steps in Portal Frame Method
$>$ Step 6: Determination of Column Axial Forces from Statics

Case Study 2

Lateral Load Analysis by Portal Frame Method and Comparison with SAP2000

The objective is to check the level of accuracy of portal method.

Case Study 2

\square Geometry and Input Data

Case Study 2

$>$ Step 1 : Location of Points of Inflection

Case Study 2

$>$ Step 2 : Determination of Column Shear

Case Study 2

> Step 2 : Determination of Column Shear

* Comparison with SAP2000

Case Study 2

> Step 3: Determination of Column Moments

Case Study 2

> Step 3: Determination of Column Moments

* Comparison with SAP2000

Case Study 2

> Step 4: Determination of Beam Moments

Case Study 2

> Step 4: Determination of Beam Moments

* Comparison with SAP2000

Case Study 2

$>$ Step 5: Determination of Beam Shear

Case Study 2

> Step 5: Determination of Beam Shear
\& Comparison with SAP2000

Case Study 2

> Step 6: Determination of Column Axial Forces

Case Study 2

> Step 6: Determination of Column Axial Forces

* Comparison with SAP2000

Limit Analysis

\square Introduction

- Most RC structures are designed using following approach:
- Moments, shears, and axial forces in RC structures are found by elastic theory.
- The actual proportioning of members is done by strength methods, in which inelastic section and member response is considered.
- Although this design approach is safe and conservative but is inconsistent to total analysis-design process.

Limit Analysis

\square Redistribution

- A frame normally will not fail when the nominal moment capacity of just one critical section is reached:
- A plastic hinge will form at that section.
- Large rotation at constant resisting moment will occur.
- Load transfer to other locations (having more capacity) along the span will occur.
- On further increase in load, additional plastic hinges may form at other locations along the span.
- As a result, structure will collapse, but only after a significant redistribution of moments.

Limit Analysis

\square Redistribution

- Full use of the plastic capacity of reinforced concrete beams and frames requires an extensive analysis of all possible mechanisms and an investigation of rotation requirements and capacities at all proposed hinge locations.
- On the other hand, a restricted amount of redistribution of elastic moments can safely be made without complete analysis yet may be sufficient to obtain most of the advantages of limit analysis.

Limit Analysis

\square Redistribution of Moments in Continuous Flexural Members

- A limited amount of redistribution is permitted by ACI Code 6.6.5. depending upon a rough measure of available ductility, without explicit calculation of rotation requirements and capacities.

Limit Analysis

\square Redistribution of Negative Moments in Continuous Flexural Members

- The net tensile strain in the extreme tension steel at nominal strength ε_{t} given in eq. below, is used as an indicator of rotation capacity.
- The ACI Code Section 6.6 .5 states "except where approximate values for moments are used, it shall be permitted to increase or decrease negative moments calculated by elastic theory at supports of continuous flexural members for any assumed loading arrangement by not more than $1000 \varepsilon_{t}$ percent, with a maximum of 20 percent".
$\varepsilon_{t}=\frac{\epsilon_{u}(d-c)}{c}$

Limit Analysis

\square Redistribution of Negative Moments in Continuous Flexural Members

$$
\begin{aligned}
& \left.\varepsilon_{\mathrm{t}}=\varepsilon_{\mathrm{u}}(\mathrm{~d}-\mathrm{c}) / \mathrm{c}\right) \\
& \varepsilon_{\mathrm{u}}=0.003
\end{aligned}
$$

As example, for given A_{s} if: $\mathrm{d}=16.5^{\prime \prime} ; \mathrm{c}=4^{\prime \prime}$

$$
\varepsilon_{t}=0.009
$$

$$
1000 \varepsilon_{t}=9 \%<20 \%
$$

Limit Analysis

\square Redistribution of Negative Moments in Continuous Flexural

Members

- Graphical representation of ACl code provision

Limit Analysis

\square Redistribution of Negative Moments in Continuous Flexural Members

- The modified negative moments shall be used for calculating moments at sections within the spans.
- Redistribution of negative moments shall be made only when ε_{t} is equal to or greater than 0.0075 at the section at which moment is reduced (ACl 6.6.5.1).

Example 8.2

\square Problem Statement

- For the beam shown, find moment redistribution.

Example 8.2

\square Solution

- To obtain maximum moments at all critical design sections. it is necessary to consider three alternative loadings.
- It will be assumed that 20 \% adjustment of support moment is permitted throughout.

Example 8.2

\square Solution

Decrease in exterior positive moment:
If negative moment is increased 20 \%, the result is decrease in $M_{\text {maxt,ext }}$ from 109 to 101

Decrease in interior positive moment:
If negative moment is increased 20%,the result is decrease in $\mathrm{M}_{\text {max+, int }}$ from 72 to 57

Decrease in interior negative moment:
If negative moment is decreased 20%, positive moments increase in both spans.

Example 8.2

\square Conclusion on Redistribution of Moments

- The net result is a reduction in design moments over the entire beam.
- This modification of moments does not mean a reduction in safety factor below that implied in code safety provisions; rather, it means a reduction of the excess strength that would otherwise be present in the structure because of the actual redistribution of moments that would occur before failure.
- It reflects the fact that the maximum design moments are obtained from alternative load patterns, which could not exist concurrently.
- The result is a more realistic appraisal of the actual collapse load of the indeterminate structure.

Plastic Analysis

Non-Linear Static (Pushover) Analysis

- Points on the structure whose performance (when it yields, cracks or fails) is required to be monitored are selected.
- The structure is pushed at the top.

Plastic Analysis

\square Non-Linear Static (Pushover) Analysis

- Top Drift (D) and corresponding base-shear (V) is calculated and plotted on V- Δ curve.
- Structure is further pushed in steps and V- Δ curve is plotted. Also, performance of the selected points is monitored and marked on the

Plastic Analysis

\square Non-Linear Static (Pushover) Analysis

- Therefore, a single chart that shows the performance of the whole structure (or separate charts for all points of interests) is obtained.
- These charts can be used to identify points where the strengthening of structure is required (i.e points that fail or start to fail in the start of

Modern Analysis Tools

- In earlier times, structural analysis was largely limited to simplified models and manual calculations, focusing primarily on static loads and linear elastic behavior.
- Today, modern tools can perform analysis with full nonlinear material and geometric behavior from the elastic to plastic stages including cracking, buckling, post-buckling, P-Delta effects, contact, complete element separation, collision, and effects of falling debris.

References

- Reinforced Concrete - Mechanics and Design (7 ${ }^{\text {th }}$ Ed.) by James MacGregor.
- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)
- Portland Cement Association (PCA 2002)

Appendix

GRAPH A. 4
Interpolation charts for lateral distribution of slab moments.

Source: Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.

