Lecture 11

Slenderness Effects in RC Structures

By:
Prof. Dr. Qaisar Ali

Civil Engineering Department
UET Peshawar
drqaisarali@uetpeshawar.edu.pk
https://drqaisarali.com

Lecture Contents

- General
- Sway and Non-Sway Frames
- Slenderness Effects in Non-sway Frames
- Example 11.1
- Slenderness Effects in Sway Frames
- Example 11.2
- References

General

\square Background

- For a frame under full dead and live load on all spans, the exterior columns experience notable bending from unbalanced loading, whereas interior columns exhibit no significant bending due to balanced loading.
- The columns may bend in single or double curvatures, depending on the load and end conditions.

Column bending moment diagram due to full dead and live
Deflected shape

General

\square Background

- The maximum column moment is obtained in column $A B$ due to pattern live load shown.

Column bending moment diagram due to
Deflected shape pattern live load

General

\square Background

- For the given frame, the actual end moments and axial force in column $A B$ due to dead plus pattern live loads are as shown in figure.

General

\square Background

- However, for the purpose of clarification of concepts to follow, we assume that the column is subjected to equal end moments with single curvature.

General

\square Background

- Due to lateral displacement of the column between its ends, axial load will cause additional secondary moment (P δ) which will magnify column span moments.

General

\square Background

- This means that column $A B$ should have been designed for the magnified moment of 31 ft .kip ($\mathrm{M}+\mathrm{P} \delta$) instead of 25 ft .kip (M_{A} or M_{B}) if secondary effects are considered.
- Hence, conducting only a primary analysis, neglecting secondary effects, might yield misleading results in certain scenarios.

General

\square Slenderness Effects in Columns

- The additional moments created by the column axial load acting on the deformed column are known as secondary moments or secondorder moments or slenderness effects.
- There are two types of second-order moments:

1. P Δ Effect: translation of the column ends
2. P反 Effect: deflection along the member.

- Slenderness effects gradually increase due to this geometric nonlinearity until the column stabilizes. However, if the column is too slender, it loses stability.

Secondary moments

General

\square Degree of Slenderness

- To better understand the slenderness effects in columns, it is important to first know the concept of column slenderness.
- The degree of slenderness of a column is expressed in terms of slenderness ratio:

$$
S . R=\frac{k l_{u}}{r}
$$

Where;
$k=$ effective length factor, depends on boundary condition of the column
$l_{u}=$ unsupported column length
$r=$ radius of gyration

General

\square Degree of Slenderness

* Radius of gyration (ACI 6.2.5.2)
- The radius of gyration r shall be permitted to be calculated by (a), (b) or (c).
a) $r=\sqrt{I_{g} / A_{g}}$
b) $r=0.3 \mathrm{~h}$ for rectangular columns
c) $r=0.25 D$ for circular columns

General

\square Degree of Slenderness

* Unsupported Length
- The unsupported length l_{u} in the direction of analysis is shown below.

General

\square Degree of Slenderness

* Effective Length Factor

- The Moreland alignment charts can be used to estimate values of k .

General

\square Degree of Slenderness

* Effective Length Factor - Determination of $\Psi_{A} \& \Psi_{B}$
$\Psi=\frac{\sum(E I / l)_{\text {column }}}{\sum(E I / l)_{\text {beam }}}$
If E is same, then
$\Psi=\frac{\sum(I / l)_{C}}{\sum(I / l)_{B}}$
$\Psi_{A}=\frac{I_{c 1} / l_{c 1}+I_{c 2} / l_{c 2}}{I_{B 1} / l_{B 1}+I_{B 2} / l_{B 2}}$
And
$\Psi_{B}=\frac{I_{c 2} / l_{c 2}+I_{c 3} / l_{c 3}}{I_{B 2} / l_{B 2}+I_{B 3} / l_{B 3}}$

General

\square Degree of Slenderness

* Effective Length Factor - Determination of $\Psi_{A} \& \Psi_{B}$
- ACI recommends to use the following values for calculation of $\Psi_{\text {A }}$ and Ψ_{B}.
- Modulus of elasticity:, $E=57000 \sqrt{f_{c}^{\prime}} \quad$ (psi) \quad [section 19.2.2]
- Moment of Inertia, I: from Table 6.6.3.1.1

Table ACI 6.6.3.1.1	
Beams	$0.35 \mathrm{I}_{\mathrm{g}}$
Columns	$0.70 \mathrm{I}_{\mathrm{g}}$
Walls - uncracked	$0.70 \mathrm{I}_{\mathrm{g}}$
Walls - cracked	$0.35 \mathrm{I}_{\mathrm{g}}$
Flat plates and flat slabs	$0.25 \mathrm{I}_{\mathrm{g}}$

General

\square Slenderness Effects in Columns

* Effect of Slenderness on Column
- As the length l of a column is incrementally increased, a critical point will be reached where the column fails due to buckling under axial load alone, rather than crushing from the combined effects of axial load and bending moment.
- This type of failure mode is referred to as buckling failure or stability failure.

General

\square Effect of Slenderness on Column

- Critical buckling load P_{c} for a column can be calculated from the famous Euler equation:

$$
P_{c}=\frac{\pi^{2} E I}{\left(k l_{u}\right)^{2}}
$$

- If $P>0.75 P_{c}$ (where 0.75 is the stiffness reduction factor as per ACl 6.7.1.1), the column will fail due to buckling.

General

\square Effect of Slenderness on Column

- As an example, the critical buckling load calculations for a $12^{\prime \prime}$ square column with $\mathrm{r}=3.6^{\prime \prime}, \mathrm{k}=1$ and $\mathrm{El}=2.142 \times 10^{6} \mathrm{ksi}$ are tabulated below.

General

\square Effect of Slenderness on Column

General

\square Analysis Procedures for Slenderness Effects

- ACI Code specifies the following three procedures for determination of secondary moments (slenderness effects).

1. Inelastic Analysis
[section 6.8]
2. Elastic Second-order Analysis
[section 6.7]
3. Elastic First-order Analysis with Moment Magnification Method [section 6.6.4.1-6.6.4.6]

General

\square Analysis Procedures for Slenderness Effects

1. Inelastic Analysis

- ACI section 6.8 provides guidance for an inelastic second-order analysis that includes material nonlinearities, the duration of loads, shrinkage, creep and interactions with the foundation.
- An inelastic analysis procedure shall have been shown to result in calculation of strength and deformations that are in substantial agreement with results of physical tests of reinforced concrete components (ACI 6.8.1.2).

General

\square Analysis Procedures for Slenderness Effects
2. Elastic Second-order Analysis

- Due to the iterative nature of the analysis, the principle of superposition cannot be used to calculate second-order moments.
- Thus, it is necessary to applied loads must be factored and combined before use in conducting the analysis.
- Following geometric properties shall be used for this analysis.

Modulus of elasticity		$E=57000 \sqrt{f_{c}^{\prime}}$
Moment of inertia, I	Beams	$0.35 \mathrm{I}_{\mathrm{g}}$
	Columns	$0.70 \mathrm{I}_{\mathrm{g}}$
	Walls - uncracked	$0.70 \mathrm{I}_{\mathrm{g}}$
	Walls - cracked	$0.35 \mathrm{I}_{\mathrm{g}}$
	Flat plates and flat slabs	$0.25 \mathrm{I}_{\mathrm{g}}$
Area	$1.0 \mathrm{~A}_{\mathrm{g}}$	

General

\square Analysis Procedures for Slenderness Effects

2. Elastic Second-order Analysis

- ACI section 6.7 provides more extensive guidance for conducting an elastic second-order analysis of frames including slender columns.
- In the first step, elastic primary moments are determined using reduced stiffness properties of the structural members.
- Then $P \Delta$ moments are evaluated using Δ from the primary analysis and added with primary moments to obtain secondary moments after first iteration.
- The P Δ moments are again evaluated using Δ from the previous analysis and added with the last obtained moments to obtain secondary moments after second iteration.
- The process is repeated till the results converge.

General

\square Analysis Procedures for Slenderness Effects
3. Moment Magnification Method (approximate)

- In this method, secondary moments are calculated by magnifying elastic first-order moments using moment magnification factors prescribed by the Code (will be explained later).
- In this lecture, Moment Magnification Method will be used for determining slenderness effects in both non-sway and sway frames.

General

\square Consideration of Slenderness Effects

- According to ACI 6.2.5.1 , slenderness effects in columns shall be permitted to be neglected, if (a) or (b) is satisfied.
a) For columns of sway frames

$$
\frac{k l_{u}}{r} \leq 22
$$

b) For columns of non-sway frames

$$
\frac{k l_{u}}{r} \leq \min \left(34-\frac{12 M_{1}}{M_{2}}, 40\right)
$$

- M_{1} and M_{2} are smaller and larger end moments, respectively.
- M_{2} is always positive while M_{1} is positive when column bends with single curvature and negative when it bends with double curvature.

Sway and Non-Sway Frames

\square Non-sway Frame

- A frame that is sufficiently braced by lateral bracing elements, exhibiting negligible lateral displacement is said to be Non-Sway frame. OR Frame essentially subjected only to gravity load only.

Sway and Non-Sway Frames

\square Sway Frame

- A frame that lacks lateral bracing elements and undergo lateral displacement (side sway) is said to be Sway frame.
- Lateral loading, vertical eccentric loading, unsymmetrical EI, unequal vertical members, and unsymmetrical supports are the reason behind the swaying of frames.

Sway and Non-Sway Frames

Slenderness effects in Non-Sway and Sway Frames

- In frames non-sway, the focus lies solely on the P δ effect, with P Δ being ignored.
- However, in frames that sway, both $\mathbf{P} \Delta$ and $\mathrm{P} \delta$ effects are need to be considered.

Sway and Non-Sway Frames

\square Classification Criteria

- ACI 318 provides three methods to declare story or frames as nonsway or sway.
* Method 1 [ACI 6.2.5.1]
- Columns are non-sway if the gross lateral stiffness of the walls (bracing elements) in a story is at least 12 times the gross lateral stiffness of the columns in that story in the direction considered.

$$
(E I)_{\text {lat }, \text { brace }} \geq 12(E I)_{\text {lat }, \text { col }}
$$

Sway and Non-Sway Frames

\square Classification Criteria

* Method 2 [ACI 6.6.4.3 (a)]
- Columns are non-sway if the increase in column end moments due to second-order effects does not exceed 5 percent of the first-order end moments i-e:

$$
\frac{M_{2 n} \text { order }}{M_{1 s t ~ o r d e r}} \leq 1.05
$$

\& Method 3 [ACI 6.6.4.3 (b)]

- Columns are non-sway if the stability index Q does not exceed 0.05.

$$
Q=\frac{\sum P_{u} \Delta_{o}}{V_{u} l_{c}} \leq 0.05
$$

- The terms in Q are explained next.

Sway and Non-Sway Frames

\square Classification Criteria

* Method 3 [ACl 6.6.4.3 (b)]
- Calculation of $\sum \mathrm{P}_{\mathrm{u}}$

$\Sigma P_{u}=$ sum of axial loads of all columns in a story due to gravity load only.
For "1.2D+1.0L+1.0 Lateral", $\mathrm{P}_{\mathrm{u}}=1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{L}}$, where P_{D} and P_{L} are axial loads in a column due to dead and live loads, respectively.
For " $0.9 \mathrm{D}+1.0$ Lateral", $\mathrm{P}_{\mathrm{u}}=0.9 \mathrm{P}_{\mathrm{D}}$, where P_{D} is axial load in a column due to dead load.

Sway and Non-Sway Frames

\square Classification Criteria
\& Method 3 [ACI 6.6.4.3 (b)]

- Calculation of $\sum P_{u}$
- $\sum P_{u}$ is used since all columns in a story deflect laterally by an amount Δ.

Sway and Non-Sway Frames

\square Classification Criteria

* Method 3 [ACI 6.6.4.3 (b)]
- Calculation of $\sum P_{u}$
- It is important to mention at this point that:
- Secondary effect in a column of non-sway story is independent of presence of other columns because the $\mathrm{P} \Delta$ effects are produced in this column only due to load on it (independent of all other columns).
- Secondary effect in a column of a sway story is dependent on the presence of other columns in that story because all columns provide resistance through their combined stiffness against lateral drift Δ.

Sway and Non-Sway Frames

\square Classification Criteria
\& Method 3 [ACI 6.6.4.3 (b)]

- Calculation of Δ_{o}
- Generally, unfactored loads are applied on a structural model. In the frame shown, if Δ is due to unfactored story shears V_{1} and V_{2}, then load factor needs to be multiplied to obtain Δ_{0}.

$$
\begin{aligned}
& \Delta_{\mathrm{O}}=\mathrm{V}_{\mathrm{L}} \times \Delta \\
& \mathrm{V}_{\mathrm{L}}=1.0(\text { for Earthquake }) \\
& \mathrm{V}_{\mathrm{L}}=1.6 \text { or } 0.8 \text { (for wind) }
\end{aligned}
$$

Sway and Non-Sway Frames

\square Classification Criteria
\& Method 3 [ACl 6.6.4.3 (b)]

- Calculation of V_{u}

$\mathrm{V}_{\mathrm{u}}=$ sum of shears in all columns in a storey due to lateral load only.
For "1.2D+1.0L+1.0Lateral", $\mathrm{V}_{\mathrm{u}}=1.0 \mathrm{~V}_{\mathrm{E}}$, where V_{E} is shear in a column due to earthquake loads.
For "0.9D+1.0Lateral", $\mathrm{V}_{\mathrm{u}}=1.0 \mathrm{~V}_{\mathrm{E}}$

Sway and Non-Sway Frames

\square Conclusion of Discussion

- Determine stability Index Q for classifying Frames.
- If $Q \leq 0.05$, the story is declared as non-sway. In the non-sway story, the slenderness effects can be neglected if:

$$
\frac{k l_{u}}{r} \leq \min \left(34-\frac{12 M_{1}}{M_{2}}, 40\right)
$$

- If $k l_{u} / r$ exceed the above limit, the (P Δ effect) is ignored, and the secondary moment resulting from member curvature ($\mathrm{P} \delta$ effect) can be determined using any of the following analysis methods.

1. Inelastic analysis
2. Second-order analysis
3. Moment magnification method for non-sway frames

Sway and Non-Sway Frames

\square Conclusion of Discussion

- If $Q>0.05$, the story is declared as sway. In the sway story, the slenderness effects can be neglected if:

$$
\frac{k l_{u}}{r} \leq 22
$$

- If $k l_{u} / r$ exceed the above limit, the secondary moments resulting from translation ($\mathrm{P} \Delta$ effect) and member curvature ($\mathrm{P} \delta$ effect) can be determined using any of the following analysis methods.

1. Inelastic analysis
2. Second-order analysis
3. Moment magnification method for sway frames

Slenderness Effects in Non-Sway Frames

Slenderness Effects in Non-Sway Frames

\square Moment Magnification in Non-Sway Frames

- Frames essentially subjected only to gravity load (no lateral load) are known as non-sway frames.

Slenderness Effects in Non-Sway Frames

\square Moment Magnification in Non-Sway Frames

- The moment magnification in case of non sway frames depends on the locations of primary and secondary moments.
- In the case of end moments in opposite direction or single curvature the magnification will occur as shown below:

Equal end moments in opposite direction.
($\mathrm{P} \Delta$ Effects are most critical)

Unequal end moments in opposite direction.
(P Δ Effects may or may not be critical)

Slenderness Effects in Non-Sway Frames

\square Moment Magnification in Non-Sway Frames

- In the case of end moments in same direction or double curvature the magnification will occur as shown below:

Unequal end moments in same direction
(No appreciable PD Effects in most cases)

Slenderness Effects in Non-Sway Frames

\square Determination of Slenderness Effects
\& Moment Magnification for Non-sway Frames (ACI 6.6.4.5)

- In non-sway frames, the secondary moments due to translation of column ends $(P \Delta)$ are negligible. Hence, the secondary moments due member curvature ($P \delta$) are calculated using the following equation.

$$
M_{c}=\delta_{n s} M_{2}
$$

Where;

- $\mathrm{M}_{\mathrm{c}}=$ magnified Moment due to primary as well as secondary moments (P δ).
- $M_{2}=$ the larger end moment
- $\delta_{n s}=$ the magnification factor (described next)

Slenderness Effects in Non-Sway Frames

\square Determination of Slenderness Effects
\& Moment Magnification for Non-sway Frames (ACI 6.6.4.5)

- The magnification factor $\delta_{n s}$ can be calculated as:
- C_{m} is a correction factor relating the actual moment diagram to an equivalent uniform moment diagram.
- For columns with transverse loads applied between supports, $\mathrm{C}_{\mathrm{m}}=1$
M_{2} shall not be taken less than $\mathrm{M}_{2 \text {,min }}$

$$
M_{2, \min }=P_{u}(0.6+0.03 h)
$$

(ACl 6.6.4.5.4)
$\mathrm{h}=$ dimension of column in the direction of analysis (inches).

Use Moreland chart for nonsway frames $\because \rightarrow E I=\frac{0.4 E_{c} I_{g}}{1+\beta_{d n s}}$

Example 11.1

\square Problem Statement
Design column C3 highlighted in figure using moment magnification method. The column is laterally braced (non-sway) against sidesway. The specified material strengths are $f_{c}^{\prime}=4000$ psi and $f_{y}=60,000$ psi.

Service Loads on Column C3		
Actions	Dead Load	Live Load
P (ft)	230	173
M_{2} (ft.kip)	2	108
M_{1} (ft.kip)	-2	100

All beams: 48" x 12"
All interior columns: (18"x18")

Example 11.1

\square Solution

> Step 1: Primary Analysis

Factored Cases	\mathbf{P} (kip)	$\mathbf{M}_{\mathbf{A}}$ (ft.kip)	$\mathbf{M}_{\mathbf{B}}$ (ft.kip)
1.4 D	322	2.8	-2.8
1.2 D	276	2.4	-2.4
1.6L	276.8	172.8	160
Combinations	\mathbf{P} (kip)	$\mathbf{M}_{\text {ugA }}$ (ft.kip)	$\mathbf{M}_{\text {ugB }}$ (ft.kip)
1.2D+1.6L	552.8	175.2	157.6

Therefore,
$P_{u}=552.8 \mathrm{kips}$
DL, AFD DL, BMD
LL, AFD
LL, BMD
$M_{1}=+157.6$ kip-ft (single curvature)
$M_{2}=175.2$ kip-ft $>M_{2, \min }=552.8(0.6+0.03 \times 18) / 12=52.51 \mathrm{ft}-\mathrm{kip}$

Example 11.1

\square Solution

> Step 2: Check for Consideration of Slenderness Effects
The slenderness effects can be ignored for non-sway frames if:

$$
\frac{k l_{u}}{r} \leq \min \left(34-\frac{12 M_{1}}{M_{2}}, 40\right)
$$

Substituting values, we get

$$
\begin{aligned}
& \frac{k l_{u}}{r}=\frac{1 \times(13 \times 12)}{0.3(18)}=28.89 \\
& 34-\frac{12 M_{1}}{M_{2}}=34-\frac{12 \times 157.6}{175.2}=23.21<40 \\
& \frac{k l_{u}}{r}=28.89>23.21 \rightarrow \text { Slenderness effects need to be considered }
\end{aligned}
$$

Example 11.1

\square Solution
> Step 2: Check for Consideration of Slenderness Effects

* Calculation of Effective Length Factor , k

$$
\begin{aligned}
& \left(\frac{I}{l}\right)_{\text {beam }}=\frac{2^{*}\left[0.35 \times\left(\frac{48 \times 12^{3}}{12}\right)\right]}{(24 \times 12)}=16.8 \mathrm{in}^{3} \\
& \left(\frac{I}{l}\right)_{\text {col }}=\frac{0.7 \times\left(\frac{18 \times 18^{3}}{12}\right)}{(14 \times 12)}=36.45 \mathrm{in}^{3} \\
& \Psi_{A}=\Psi_{B}=\frac{I_{c} / l_{C}}{I_{B} / l_{B}}=\frac{36.45}{16.8}=2.17
\end{aligned}
$$

From Moreland's chart, $\mathrm{k}=0.87$

[*] The moment of inertia of T- Beam can be taken as 2 times the moment of inertia of rectangular beam (ACI R6.6.3.1.1).

Example 11.1

\square Solution

> Step 3: Calculate Magnified Moment M_{c} due to $\boldsymbol{P} \boldsymbol{\delta}$
$M_{c}=\delta_{n s} M_{2}$
$\delta_{n s}=\frac{C_{m}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq 1$
$\delta_{n s}=\frac{0.96}{1-\frac{552.8}{0.75(4500)}}=1.15$
Subsisting this value, we get
$M_{c}=\delta_{n s} M_{2}=1.15 \times 175.2$
$C_{m}=0.6+0.4\left(M_{1} / M_{2}\right) \geq 0.4$
$C_{m}=0.6+0.4(157.6 / 175.2)=0.96$
$\beta_{\text {dns }}=\frac{1.2 D}{1.2 D+1.6 L}=\frac{276}{552.8}=0.50$
NOTE: We could also have taken $\beta_{d n s}=0.6$ for simplification.
$E I=\frac{0.4 E_{c} I_{g}}{1+\beta_{\text {dns }}}=8.4 \times 10^{9} \mathrm{in}^{2} . l b$
$P_{c}=\frac{\pi^{2} E I}{\left(k l_{u}\right)^{2}}=4500 \mathrm{kip}$
$M_{c}=201.48 \mathrm{ft}$. kip Hence, the column shall be designed for 201.48 ft . Kip instead of 175.2 ft -kip.

Slenderness Effects in Sway Frames

Slenderness Effects in Sway Frames

\square Moment Magnification in Sway Frames

- Frames subjected to lateral loads are generally called as sway frames.

Slenderness Effects in Sway Frames

\square Moment Magnification in Sway Frames

- Effect of end moments and curvature on secondary effects in sway frames is shown below.

Maximum values of primary and secondary moments occur at the same locations, at the ends of the columns, they are therefore fully additive, leading to a large moment magnification in contrast to non sway frames.

Slenderness Effects in Sway Frames

\square Moment Magnification in Sway Frames

- Various possible scenarios are given below

Slenderness Effects in Sway Frames

\square Determination of Slenderness Effects

* Moment Magnification for Sway Frames (ACI 6.6.4.6)

1. Secondary Moments due to $\mathrm{P} \triangle$ Effect

- The $\mathbf{P} \Delta$ effect are determined using following equation:

$$
\begin{aligned}
& M_{1}=M_{1 n s}+\delta_{s} M_{1 s} \\
& M_{2}=M_{2 n s}+\delta_{s} M_{2 s}
\end{aligned}
$$

Where;

- $\quad M_{1 n s}, M_{2 n s}=$ first order moments due to gravity loads.
- $\quad M_{1 s}, M_{2 s}=$ first order moments due to lateral loads.
- $\delta_{s}=$ moment magnifier for sway frames (described next)

Slenderness Effects in Sway Frames

\square Determination of Slenderness Effects
\& Moment Magnification for Sway Frames (ACI 6.6.4.6)

1. Secondary Moments due to P \triangle Effect

- The moment magnification factor for sway frames δ_{s} can be determined using any of the following methods:
- Method 1
$\delta_{s}=\frac{1}{1-Q} \geq 1$
- This method closely predicts secondary effects as long as $\delta_{s} \leq 1.5$.
- If $\delta_{s}>1.5$, method 2 shall be used.

$$
Q=\frac{\sum P_{u} \Delta_{0}}{V_{u} l_{c}}
$$

Where;

- $\sum P_{u}=$ total factored vertical load
- $\Delta_{0}=$ first order relative deflection between top and bottom of the story
- $\mathrm{V}_{\mathrm{u}}=$ total story shear
- $l_{c}=$ length of compressive member measured c/c of joint in frame.

Slenderness Effects in Sway Frames

\square Determination of Slenderness Effects

* Moment Magnification for Sway Frames (ACI 6.6.4.6)

1. Secondary Moments due to $\mathrm{P} \triangle$ Effect

- Method 2
$\delta_{s}=\frac{1}{1-\frac{\sum P_{u}}{0.75 \sum P_{c}}} \geq 1$

Where;

- $\quad \sum P_{u}$ is the summation for all the vertical loads in a story of a 3D structure.
- $\quad \sum P_{c}$ is the summation for all sway resisting columns in a story of a 3D structure.

Slenderness Effects in Sway Frames

\square Determination of Slenderness Effects

* Moment Magnification for Sway Frames (ACl 6.6.4.6)

2. Secondary Moments due to P δ Effect

- Once the moments due to P \triangle effect are determined, the second step is to calculate secondary moments along the member length ($\mathrm{P} \delta$).
- The magnified moment due to P δ effect can be determined using the nonsway frame procedure substituting the magnified moments of $\mathrm{P} \Delta$.

$$
M_{c}=\delta_{n s}\left(M_{2}\right)
$$

where; $M_{2}=M_{n s}+\delta_{s} M_{s}$. Substituting this, we get

$$
\begin{aligned}
& \frac{M_{c}}{\vdots}=\delta_{n s}\left(M_{n s}+\delta_{s} M_{S}\right) \\
& \ddots-\cdots-\cdots \text { The magnified moment } M_{c} \text { now includes both } \mathrm{P} \Delta \text { and } \mathrm{P} \delta \text { effects }
\end{aligned}
$$

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments

1. Perform primary analysis
2. Calculate stability index Q to classify frames as sway or non-sway

- The following load combinations are considered
* Case 1: Gravity Loads Only

$$
\begin{equation*}
1.2 \mathrm{D}+1.6 \mathrm{~L} \tag{i}
\end{equation*}
$$

* Case 2: Gravity Plus Lateral Load

$$
\begin{equation*}
1.2 \mathrm{D}+1.0 \mathrm{~L}+1.0 \mathrm{E} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
0.9 \mathrm{D}+1.0 \mathrm{E} \tag{iii}
\end{equation*}
$$

Q will be calculated for these combinations only

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments
3. Determine the slenderness ratio using $k=1.0$ and compare it to codespecified limits to decide whether to neglect or consider secondary effects.

- If slenderness effects needs to be considered, the actual value of effective length factor k is determined by finding values of Ψ_{A} and Ψ_{B} and then using relevant Moreland chart.

$$
\left.\begin{array}{l}
\Psi_{A}=\frac{I_{c 1} / l_{c 1}+I_{c 2} / l_{c 2}}{I_{B 1} / l_{B 1}+I_{B 2} / l_{B 2}} \\
\Psi_{B}=\frac{I_{c 2} / l_{c 2}+I_{c 3} / l_{c 3}}{I_{B 2} / l_{B 2}+I_{B 3} / l_{B 3}}
\end{array}\right\} \quad \begin{array}{r}
\text { Where; } I_{c}=0.7 I_{g} \\
I_{b}=0.35 I_{g}
\end{array}
$$

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments
4. Analyze the frame for non-sway case under gravity loads only.

- For this, $M_{c}=\delta_{n s} M_{n s}$ and load combination: 1.2D + 1.6 L

5. Analyze the frame for sway case under gravity plus lateral loads

- For this, two load combinations $1.2 D+1.0 L \pm E$ and $0.9 D \pm E$ are used
- Moments are divided in two groups:
i. Moments in column due to gravity loads: $\mathrm{M}_{\mathrm{ns}}=1.2 \mathrm{M}_{\mathrm{D}}+1.0 \mathrm{M}_{\mathrm{L}}$
ii. Moments in column due to lateral loads: $\mathrm{M}_{\mathrm{s}}=1.0 \mathrm{E}$
- Magnified moments due to $P \Delta$ effect are calculated using

$$
\begin{aligned}
& M_{1}=M_{n s 1}+\delta_{s} M_{s 1} \\
& M_{2}=M_{n s 2}+\delta_{s} M_{s 2}
\end{aligned}
$$

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments
5. Analyze the frame for sway case under gravity plus lateral loads

- Magnified moment including both $P \delta$ and $P \triangle$ effects are calculated as follows:

$$
M_{c}=\delta_{n s} M_{2} \quad ; \text { where } M_{2}=M_{2 n s}+\delta_{s} M_{2 s}
$$

- The value of $\delta_{n s}$ in this case is determined by substituting magnified moments in C_{m} and taking $E I=0.4 E_{c} I_{g}$ in critical buckling formula.

$$
\begin{aligned}
\delta_{n s} & =\frac{C_{m}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq 1 \\
C_{m} & =0.6+0.4\left(M_{1} / M_{2}\right) \geq 0.4 \\
P_{c} & =\frac{\pi^{2}}{\left(k l_{u}\right)^{2}} E I
\end{aligned}
$$

$$
\begin{aligned}
& \text { Here; } \\
& M_{1}=M_{1 n s}+\delta_{s} M_{1 s} \\
& M_{2}=M_{2 n s}+\delta_{s} M_{2 s} \\
& E I=0.4 E_{c} I_{g}
\end{aligned}
$$

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments
6. Check for the stability of structural system using code-prescribed method.

- Second-order moments shall not exceed 40 percent of first-order (primary) moments (ACI 6.2.5.3).

$$
M_{2 n d} \text { order } / M_{1 \text { st } \text { order }} \leq 1.4
$$

Slenderness Effects in Sway Frames

\square Stepwise Procedure for Determining Secondary Moments
7. Design the column for axial loads and moments resulting from all load combinations as previously discussed. The design corresponding to critical situation is adopted.

Slenderness Effects in Sway Frames

\square Workflow for Determining Column Slenderness Effects

Example 11.2

\square Problem Statement

Evaluate the slenderness effects in columns $A B, C D$ and $E F$ for the multi-story reinforced concrete frame shown below.

- All columns: 14"x14" ; All beams: 14"x20"
- Story height: 11'-8" (c/c) ; E = 3600 ksi

Example 11.2

\square Solution
> Step 1: Primary Analysis

- The first-order linear elastic order analysis was carried out in the analysis software. The bending moments diagrams for various loadings are shown below.

Example 11.2

\square Solution
> Step 1: Primary Analysis

* Sign Convention for bending Moment Diagram

Example 11.2

\square Solution
> Step 1: Primary Analysis

* Results Obtained From Primary Analysis

Column	Service Load Effects					
	$\begin{aligned} & P_{D} \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} P_{\mathrm{L}} \\ \text { (kip) } \end{gathered}$	$\begin{aligned} & P_{E} \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{D}} \\ \text { (ft-kip) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{L}} \\ (\mathrm{ft}-\mathrm{kip}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ \text { (ft-kip) } \end{gathered}$
AB	65	80	0	5.78	-37	-65
CD	31	33	0	44	60	-45
EF	94	102	28	20	27	-175

Example 11.2

\square Solution
> Step 1: Primary Analysis

- The following Load Combinations would be considered for combining the previously calculated load effects.
* Case 1: Gravity Loads Only

$$
\begin{equation*}
1.2 \mathrm{D}+1.6 \mathrm{~L} \tag{i}
\end{equation*}
$$

* Case 2: Gravity Plus Lateral Load

$$
\begin{align*}
& 1.2 \mathrm{D}+1.0 \mathrm{~L}+1.0 \mathrm{E} \tag{ii}\\
& 0.9 \mathrm{D}+1.0 \mathrm{E} \ldots \ldots \ldots . \tag{iii}
\end{align*}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.6L)

* Calculation of M_{ns} and M_{s} for Column AB

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=206 \mathrm{kip} \\
& \mathrm{M}_{1}=-19.2 \mathrm{ft}-\mathrm{kip} \\
& \text { (double curvature) } \\
& \mathrm{M}_{2}=52.26 \mathrm{ft} \text {-kip }
\end{aligned}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.6L)

* Calculation of M_{ns} and M_{s} for Column CD

$$
\begin{aligned}
& P_{\mathrm{u}}=90 \mathrm{kip} \\
& \mathrm{M}_{1}=-120.4 \mathrm{ft} \text {-kip } \\
& \text { (double curvature) } \\
& \mathrm{M}_{2}=149 \mathrm{ft} \text {-kip }
\end{aligned}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.6L)

* Calculation of M_{ns} and M_{s} for Column EF

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{u}}=276 \mathrm{kip} \\
& \mathrm{M}_{1}=0 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{2}=67.2 \mathrm{ft}-\mathrm{kip}
\end{aligned}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.0L + 1.0E)

* Calculation of M_{ns} and M_{s} for Column AB

$$
\begin{aligned}
& P_{\mathrm{u}}=158 \mathrm{kip} \\
& \mathrm{M}_{1 \mathrm{~ns}}=10 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{1 \mathrm{~s}}=53 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{2 \mathrm{~ns}}=-30 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{2 \mathrm{~s}}=-65 \mathrm{ft}-\mathrm{kip}
\end{aligned}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.0L + 1.0E)

* Calculation of M_{ns} and M_{s} for Column CD

$$
\begin{aligned}
& P_{\mathrm{u}}=70.2 \mathrm{kip} \\
& \mathrm{M}_{1 \mathrm{~ns}}=-91 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{1 \mathrm{~s}}=31 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{2 \mathrm{~ns}}=113 \mathrm{ft}-\mathrm{kip} \\
& \mathrm{M}_{2 \mathrm{~s}}=-46 \mathrm{ft}-\mathrm{kip}
\end{aligned}
$$

Example 11.2

\square Solution

> Step 1: Primary Analysis - (1.2D + 1.0L + 1.0E)
\& Calculation of M_{ns} and M_{s} for Column EF

Example 11.2

\square Solution

> Step 1: Primary Analysis - (0.9D + 1.0E)

* Calculation of M_{ns} and M_{s} for Column AB

Example 11.2

\square Solution

> Step 1: Primary Analysis - (0.9D + 1.0E)

* Calculation of M_{ns} and M_{s} for Column CD

Example 11.2

\square Solution

> Step 1: Primary Analysis - (0.9D + 1.0E)
\& Calculation of M_{ns} and M_{s} for Column EF

Example 11.2

\square Solution
> Step 1: Primary Analysis - Summary of Calculations

Load Combination: 1.2D + 1.6L			
Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	$\mathbf{M}_{\mathbf{1}}$ (ft-kip)	$\mathbf{M}_{\mathbf{2}}$ (ft-kip)
AB	206	-19.2	52.26
CD	90	-120.4	149
EF	276	0	67.2

Example 11.2

\square Solution
> Step 1: Primary Analysis - Summary of Calculations

Column	Load Combination: 1.2D + 1.0L + 1.0E				
	P_{u} (kip)	$\mathrm{M}_{1 \mathrm{~ns}}$ (ft-kip)	$\mathrm{M}_{1 \mathrm{~s}}$ (ft-kip)	$\mathrm{M}_{2 \mathrm{~ns}}$ (ft-kip)	$\mathrm{M}_{2 \mathrm{~s}}$ (ft-kip)
	158	10	53	-30	-65
CD	70.2	-91	31	113	-46
EF	214.8	0	0	51	-175

Column	Load Combination: 0.9D + 1.0E				
	$\begin{gathered} P_{u} \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~ns}} \\ \text { (ft-kip) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s}} \\ \text { (ft-kip) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~ns}} \\ \text { (ft-kip) } \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~s}} \\ \text { (ft-kip) } \end{gathered}$
AB	58.5	- 3.6	53	5.2	-65
$C D$	27.9	- 32	31	40	-46
EF	84.6	0	0	18	- 175

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q

- A story is considered non-sway if stability index $Q \leq 0.05$; otherwise, it is classified as sway.

$$
Q=\frac{\sum_{P_{u}} \Delta_{o}}{V_{u} l_{c}}
$$

* Case 1: Gravity Loads Only

Already non-sway case. No need for calculating Q.

* Case 2: Gravity Plus Lateral Load

$$
\begin{align*}
& 1.2 \mathrm{D}+1.0 \mathrm{~L}+1.0 \mathrm{E} \ldots \ldots \ldots \ldots \ldots . \text { (ii) } \tag{ii}\\
& 0.9 \mathrm{~F}+1.0 \mathrm{E} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \text { (iii) } \tag{iii}
\end{align*}
$$

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (1.2D + 1.0L + 1.0E)

* Calculation of $\sum P_{u}$ for columns $\mathrm{AB} \& \mathrm{CD}$

No. of interior columns $=6$
No. of edge columns = 10
No. of corner columns = 4
Now,
$\sum P_{u}=4 \times 33+10 \times 72+6 \times 157$

$=1794 \mathrm{kip}$

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (1.2D + 1.0L + 1.0E)

* Calculation of $\sum P_{u}$ for column EF

$$
\begin{aligned}
& \sum P_{u}=4 \times 106+10 \times 220+6 \times 467 \\
& =5426 \mathrm{kjp}
\end{aligned}
$$

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (1.2D + 1.0L + 1.0E)
\& Calculation of $\mathrm{V}_{\mathrm{u}} \& \Delta_{o}$ for columns AB \& CD
$V_{u}=4 \times 6+6 \times 10+4 \times 7.8+6 \times 11.9$
$=187 \mathrm{kip}$
And
$\Delta_{o}=0.36^{\prime \prime}$ (from analysis software)

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (1.2D + 1.0L + 1.0E)

* Calculation of $\mathrm{V}_{\mathrm{u}} \& \Delta_{o}$ for column EF
$\mathrm{V}_{\mathrm{u}}=4 \times 16+6 \times 20+4 \times 17+6 \times 21$
$=378 \mathrm{kip}$
And
$\Delta_{o}=1.9^{\prime \prime}$ (from analysis software)

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (1.2D + 1.0L + 1.0E)

Column	$\sum \mathbf{P}_{\mathrm{u}}$ (kip)	$\boldsymbol{l}_{\boldsymbol{c}}$ (in.)	\mathbf{v}_{u} (kip)	$\boldsymbol{\Delta}_{\mathbf{o}}$ (in.)	$Q=\frac{\sum P_{u} \Delta_{o}}{V_{u} l_{c}}$	Remarks
AB	1794	140	187	0.36	0.03	$\mathrm{Q}<0.05 \rightarrow$ non-sway
CD	1794	140	187	0.36	0.03	$\mathrm{Q}<0.05, \rightarrow$ non-sway
EF	5426	140	378	1.9	0.19	$\mathrm{Q}>0.05 \rightarrow$ Sway

- Hence for columns AB and CD that are part of a non-sway story, $P \Delta$ will be ignored and magnified moment due to $\mathrm{P} \delta$ effect only is determined as;

$$
M_{c}=\delta_{n s}\left(M_{n s}+\delta_{s} M_{s}\right) ; \quad \delta_{s}=1
$$

- For column EF that is part of sway story, the magnified moment considering both $P \Delta$ and $P \delta$ effects will be calculated using:

$$
M_{c}=\delta_{n s}\left(M_{n s}+\delta_{s} M_{s}\right) ; \quad \delta_{s} \neq 1 \quad \text { (needs to be calculated) }
$$

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (0.9D + 1.0E)
\& Calculation of $\sum P_{u}$ for columns $\mathrm{AB} \& \mathrm{CD}$
No. of interior columns $=6$
No. of edge columns = 10
No. of corner columns = 4
Now,
$\sum P_{u}=4 \times 14+6 \times 29+4 \times 27+6 \times 58$

$=686 \mathrm{kip}$

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (0.9D + 1.0E)

* Calculation of $\sum P_{u}$ for column EF

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (0.9D +1.0E)
\& Calculation of Vu \& Δ_{o} for columns AB \& CD

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (0.9D + 1.0E)
\& Calculation of Vu \& Δ_{0} for column EF

Example 11.2

\square Solution

> Step 2: Calculation of Stability Index Q (0.9D + 1.0E)

Column	$\sum \mathbf{P}_{\mathrm{u}}$ (kip)	$\boldsymbol{l}_{\boldsymbol{u}}$ (ft)	$\mathbf{V}_{\mathbf{u}}$ (kip)	$\boldsymbol{\Delta}_{\mathbf{o}}$ (in.)	$Q=\frac{\sum P_{u} \Delta_{o}}{V_{u} l_{c}}$	Remarks
AB	686	140	187	0.36	0.01	$\mathrm{Q}<0.05 \rightarrow$ non-sway
CD	686	140	187	0.36	0.01	$\mathrm{Q}<0.05, \rightarrow$ non-sway
EF	1960	140	378	1.9	0.07	$\mathrm{Q}>0.05 \rightarrow$ sway

- Hence for columns AB and CD that are part of a non-sway story, $P \Delta$ will be ignored and magnified moment due to $\mathrm{P} \delta$ effect is determined as;

$$
M_{c}=\delta_{n s}\left(M_{n s}+\delta_{s} M_{s}\right) ; \quad \delta_{s}=1
$$

- For column EF that is part of sway story, the magnified moment considering both $P \Delta$ and $P \delta$ effects will be calculated using:

$$
M_{c}=\delta_{n s}\left(M_{n s}+\delta_{s} M_{s}\right) ; \quad \delta_{s} \neq 1 \quad \text { (needs to be calculated) }
$$

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 1 (1.2D + 1.6L)

* Check if the slenderness effects can be ignored

Assuming k=1, determine slenderness ratio and check with code-specified limit

Column	\mathbf{I}_{u} (in.)	$r=\mathbf{0 . 3 h}$ (in.)	$k l_{u} / r$	$\frac{M_{1}}{M_{2}}$	$\min \left(34-\frac{12 M_{1}}{M_{2}}, 40\right)$	Remarks
AB	120	$0.3(14)$ $=4.2$	28.57	$-19.2 / 52.26$ $=-0.37$	$\min (38.44,40)=38.4$	$\frac{k l_{u}}{r}<38.4$
CD	120	$0.3(14)$ $=4.2$	28.57	$-120.4 / 149$ $=-0.81$	$\min (43.7,40)=40$	$\frac{k l_{u}}{r}<40$ Neglect slenderness effects
EF	120	$0.3(14)$ $=4.2$	28.57	$0 / 67.2$ $=0$	$\min (34,40)=34$	$\frac{k l_{u}}{r}<34$

Example 11.2

\square Solution

> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Check if the slenderness effects can be ignored

Assuming k = 1, determine slenderness ratio and check with code-specified limit.
Slenderness effects in sway frames can be neglected if
$\frac{k l_{u}}{r} \leq 22$
$\frac{k l_{u}}{r}=\frac{1 \times 120}{0.3(14)}=28.57$
Since 28.57 > 22 , the slenderness effects cannot be neglected.
Now calculate the actual value of effective length factor k using Moreland Chart

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Calculate effective length factor k

$$
\begin{aligned}
& \Psi_{A}=\frac{67228}{2 \times 78400}=0.43 ; \Psi_{B}=\frac{2 \times 67228}{2 \times 78400}=0.85 ; \Psi_{C}=\frac{67228}{78400}=0.85 \\
& \Psi_{D}=\frac{2 \times 67228}{78400}=1.71 ; \Psi_{E}=\frac{2 \times 67228}{78400}=1.71 ; \Psi_{F}=\infty
\end{aligned}
$$

All columns are 14" square; all beams are 14"× 20"; E = 3600 ksi

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Calculate effective length factor k

The values of k for using Moreland Alignment Chart are given below.

$$
\begin{aligned}
& k_{A B}=1.25 \\
& k_{C D}=1.4 \\
& k_{E F}=2.7
\end{aligned}
$$

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Calculate magnified moments due to $P \Delta$

$$
\begin{aligned}
& M_{1}=M_{1 n s}+\delta_{s} M_{1 s} \\
& M_{2}=M_{2 n s}+\delta_{s} M_{2 s} \\
& \delta_{s}=\frac{1}{1-Q} \\
& M_{2, \min }=P_{u}(0.6+0.03 h)
\end{aligned}
$$

Column	\mathbf{P}_{u} (kip)	\boldsymbol{Q}	$\boldsymbol{\delta}_{\boldsymbol{s}}$	$\mathbf{M}_{1 \text { ns }}$ (ft.kip)	$\mathbf{M}_{1 \mathbf{s}}$ (ft.kip)	$\mathbf{M}_{2 \text { ns }}$ (ft.kip)	$\mathbf{M}_{2 \mathbf{s}}$ (ft.kip)	\mathbf{M}_{1} (ft.kip)	\mathbf{M}_{2} (ft.kip)	$\mathbf{M}_{\text {min }}$ (ft.kip)
AB	158	0.03	1	10	53	-30	-65	63	-95	13.4
CD	70.2	0.03	1	-91	31	113	-46	-60	67	6.0
EF	214.8	0.19	1.23	0	0	51	-175	0	-215.3	18.3

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Calculate magnified moments due to $P \delta$ and $P \Delta$ effects

$$
\begin{aligned}
& M_{c}=\delta_{n s} M_{2} ; \delta_{n s}=\frac{C_{m}}{1-\frac{P_{u}}{0.75 P_{c}}} \geq 1 \\
& P_{c}=\frac{\pi^{2} E I}{\left(k l_{u}\right)^{2}} \\
& E I=0.4 E_{c} I_{g}=0.4 \times 3600\left(\frac{14 \times 14^{3}}{12}\right)=4.61 \times 10^{6} \mathrm{kip} . \mathrm{in}^{2}
\end{aligned}
$$

And

$$
C_{m}=0.6+0.4\left(M_{1} / M_{2}\right) \geq 0.4
$$

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L + 1.0E)

* Calculate magnified moments due to $P \delta$ and $P \Delta$ effects

Column	\mathbf{P}_{u} (kip)	\mathbf{k}	$\mathbf{0 . 7 5 \mathbf { P } _ { \mathbf { c } }}$ (kip)	$\mathbf{M}_{1} / \mathbf{M}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{m}}$	$\boldsymbol{\delta}_{\boldsymbol{n s}} \geq \mathbf{1}$	$\mathbf{M}_{\mathrm{c}}=\boldsymbol{\delta}_{\boldsymbol{n s}} \max \left(\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{\mathbf{2}}\right)$
$\mathrm{ft.kip})$							

Example 11.2

\square Solution

> Step 3: Magnified Moments for Case 2 (1.2D + 1.0L-1.0E)

* Calculate magnified moments due to $P \delta$ and $P \Delta$ effects

Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	\boldsymbol{Q}	$\boldsymbol{\delta}_{\boldsymbol{s}}$	$\mathbf{M}_{1 \text { ns }}$ (ft.kip)	$\mathbf{M}_{1 \mathbf{s}}$ (ft.kip)	$\mathbf{M}_{2 \text { ns }}$ (ft.kip)	$\mathbf{M}_{2 \mathbf{s}}$ (ft.kip)	\mathbf{M}_{1} (ft.kip)	$\mathbf{M}_{\mathbf{2}}$ (ft.kip)	$\mathbf{M}_{\text {min }}$ (ft.kip)
AB	158	0.03	1	10	-53	-30	+65	-43	35	5
CD	70.2	0.03	1	-91	-31	113	+46	-122	159	2.4
EF	214.8	0.19	1.23	0	0	51	+175	0	266.3	7.2

Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	\mathbf{k}	$\mathbf{0 . 7 5 \mathbf { P } _ { \mathbf { c } }}$ (kip)	$\mathbf{M}_{\mathbf{1}} / \mathbf{M}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{m}} \geq \mathbf{0 . 4}$	$\boldsymbol{\delta}_{\boldsymbol{n s}} \geq \mathbf{1}$	$\boldsymbol{\delta}_{\boldsymbol{n s}} \boldsymbol{\operatorname { m a x } (\boldsymbol { M } _ { \mathbf { 1 } } , \boldsymbol { M } _ { 2 })}$ (ft.kip)
AB	158	1.25	1516.6	$-43 / 35=-1.22$	$0.11<0.4$	$0.45<1$	$1 \times(-43)=-43$
CD	70.2	1.4	1209.0	$46 /-122=-0.38$	0.45	$0.48<1$	$1 \times 159=159$
EF	214.8	2.7	325.1	$0 / 266.3=0$	0.6	1.77	$1.77 \times 266.3=471.4$

Example 11.2

\square Solution
> Step 3: Magnified Moments for Case 2 (0.9D + 1.0E)

- In the subsequent slides, the magnified moments for the second load combination $0.9 \mathrm{D}+1.0 \mathrm{E}$. Will be determined by repeating the same procedure as adopted for 1.2D + 1.0E.

Example 11.2

\square Solution

> Step 3: Magnified Moments for Case 2 ($0.9 \mathrm{D}+1.0 \mathrm{E}$)

* Calculate magnified moments due to $P \delta$ and $P \Delta$ effects

Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	\boldsymbol{Q}	$\boldsymbol{\delta}_{\boldsymbol{s}}$	$\mathbf{M}_{\text {1ns }}$ (ft.kip)	$\mathbf{M}_{1 \mathbf{s}}$ (ft.kip)	$\mathbf{M}_{\text {2ns }}$ (ft.kip)	$\mathbf{M}_{2 s}$ (ft.kip)	\mathbf{M}_{1} (ft.kip)	\mathbf{M}_{2} (ft.kip)	$\mathbf{M}_{\min }$ (ft.kip)
AB	58.5	0.01	1	-3.6	53	5.2	-65	49.4	-59.8	5.0
CD	27.9	0.01	1	-32	31	40	-46	-1.0	-6.0	2.4
EF	84.6	0.07	1.08	0	0	51	-175	0	-138.0	7.2

Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	\mathbf{k}	$\mathbf{0 . 7 5 P}_{\mathbf{c}}$ (kip)	$\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{m}} \geq \mathbf{0 . 4}$	$\boldsymbol{\delta}_{\boldsymbol{n s}} \geq \mathbf{1}$	$\mathbf{M}_{\mathrm{c}}=$ $\boldsymbol{\delta}_{\boldsymbol{n} \boldsymbol{s}} \boldsymbol{\operatorname { m a x } (\boldsymbol { M } _ { \mathbf { 1 } } , \boldsymbol { M } _ { 2 })}$ (ft.kip)
AB	58.5	1.25	1516.6	$-59.8 / 49.4=-0.83$	0.93	$0.97<1$	$1 \times(-59.8)=-59.8$
CD	27.9	1.4	1209.0	$-1 /-6=0.17$	0.53	$0.54<1$	$1 \times(-6)=-6$
EF	84.6	2.7	325.1	$0 /-138=0$	0.6	$0.81<1$	$1 \times(-138)=-138$

Example 11.2

\square Solution

> Step 3: Magnified Moments for Case 2 (0.9D-1.0E)

* Calculate magnified moments due to $P \delta$ and $P \Delta$ effects

Column	$\mathbf{P}_{\mathbf{u}}$ (kip)	\boldsymbol{Q}	$\boldsymbol{\delta}_{\boldsymbol{s}}$	$\mathbf{M}_{\text {ns }}$ (ft.kip)	$\mathbf{M}_{1 \mathbf{s}}$ (ft.kip)	$\mathbf{M}_{2 \text { ns }}$ (ft.kip)	$\mathbf{M}_{\mathbf{2 s}}$ (ft.kip)	\mathbf{M}_{1} (ft.kip)	$\mathbf{M}_{\mathbf{2}}$ (ft.kip)	$\mathbf{M}_{\text {min }}$ (ft.kip)
AB	58.5	0.01	1	-3.6	-53	5.2	+65	56.6	70.2	5.0
CD	27.9	0.01	1	-32	-31	40	+46	-63.0	-86.0	2.4
EF	84.6	0.07	1.08	0	0	51	+175	0	240	7.2

Column	\mathbf{P}_{u} (kip)	\mathbf{k}	$\mathbf{0 . 7 5 \mathbf { P } _ { \mathrm { c } }}$ (kip)	$\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{m}} \geq \mathbf{0 . 4}$	$\boldsymbol{\delta}_{\boldsymbol{n s}} \geq \mathbf{1}$	$\mathbf{M}_{\mathbf{c}}=$ $\boldsymbol{\delta}_{\boldsymbol{n s}} \boldsymbol{\operatorname { m a x } (\boldsymbol { M } _ { \mathbf { 1 } } , \boldsymbol { M } _ { 2 })}$ (ft.kip)
AB	58.5	1.25	1516.6	$-56.6 / 70.2=-0.81$	$0.28<0.4$	$0.42<1$	$1 \times 70.2=70.2$
CD	27.9	1.4	1209.0	$-63 /-86=0.73$	0.9	$0.92<1$	$1 \times-86=-86$
EF	84.6	2.7	325.1	$0 / 240=0$	0.6	$0.81<1$	$1 \times 240=240$

Example 11.2

\square Solution
> Step 3: Magnified Moments - Summary

- The summary of magnified moments for all the load combinations is shown below.

Load Combination	Column AB		Column CD		Column EF	
	\mathbf{P}_{u} (kip)	$\mathbf{M}_{\mathbf{c}}$ (kip-ft)	\mathbf{P}_{u} (kip)	$\mathbf{M}_{\mathbf{c}}$ (kip-ft)	\mathbf{P}_{u} (kip)	$\mathbf{M}_{\mathbf{c}}$ (kip-ft)
$1.2 \mathrm{D}+1.6 \mathrm{~L}$	206	52.3	$\mathbf{9 0}$	$\mathbf{1 4 9}$	$\mathbf{2 7 6}$	$\mathbf{6 7 . 2}$
$1.2 \mathrm{D}+1.0 \mathrm{~L}+1.0 \mathrm{E}$	158	-95	70.2	67	214.8	-381.1
$1.2 \mathrm{D}+1.0 \mathrm{~L}-1.0 \mathrm{E}$	158	-43	70.2	$\mathbf{1 5 9}$	$\mathbf{2 1 4 . 8}$	471.4
$0.9 \mathrm{D}+1.0 \mathrm{E}$	58.5	-59.8	27.9	-6	84.6	-138
$0.9 \mathrm{D}-1.0 \mathrm{E}$	58.5	70.2	27.9	-86	$\mathbf{8 4 . 6}$	$\mathbf{2 4 0}$

Example 11.2

\square Solution
> Step 4: Check Stability of Structure

- Second-order moments shall not exceed 40 percent of first-order (primary) moments (ACl 6.2.5.3).

$$
M_{2 n d} \text { order } / M_{1 \text { st } \text { order }} \leq 1.4
$$

Column	$1.2 \mathrm{D}+1.0 \mathrm{~L} \pm 1.0 \mathrm{E}$			$0.9 \mathrm{D} \pm 1.0 \mathrm{E}$		
	$\mathrm{M}_{1 \text { st-order }}$ (kip-ft)	$M_{2 \text { nd-order }}$ (kip-ft)	$\frac{M_{2 n d}}{M_{1 s t}}$	$\mathrm{M}_{1 \text { st-order }}$ (kip-ft)	$\mathbf{M}_{2 \text { nd-order }}$ (kip-ft)	$\frac{M_{2 n d}}{M_{1 s t}}$
AB	-95	-95	1	70.2	70.2	1
CD	159	159	1	86	-86	1
EF	226	471.4	$2.08>1.4$	193	240	1.2

Column EF is unstable and requires revision of its size.

Example 11.2

\square Solution
> Step 5: Determination of Reinforcement

* Determination of Longitudinal Reinforcement for Column AB

Example 11.2

\square Solution

> Step 5: Determination of Reinforcement

* Determination of Longitudinal Reinforcement for Column CD

Example 11.2

\square Solution
> Step 5: Determination of Reinforcement

* Determination of Longitudinal Reinforcement for Column EF

Example 11.2

\square Solution

> Step 6: Drafting

NOTE: The drawing shows detailing of longitudinal reinforcement only. Transverse reinforcement shall be calculated as per requirements and provided (which have been omitted in this example).

References

- Reinforced Concrete - Mechanics and Design ($7^{\text {th }}$ Ed.) by James MacGregor.
- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)
- Portland Cement Association (PCA 2002)

