Updated: Dec 04, 2023 Department of Civil Engineering, University of Engineering and Technology Peshawar, Pakistan

1

Lecture 06

Design of Reinforced Concrete Retaining Walls

By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar

drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com

Prof. Dr. Qaisar Ali

CE 416: Reinforced Concrete Design - II

Lecture Contents

- General
- RC cantilever retaining wall
- Stability evaluation of retaining wall
- Earth pressure and Soil parameters
- Design of RC cantilever retaining wall
- Design Example
- Practical Design Examples
- References

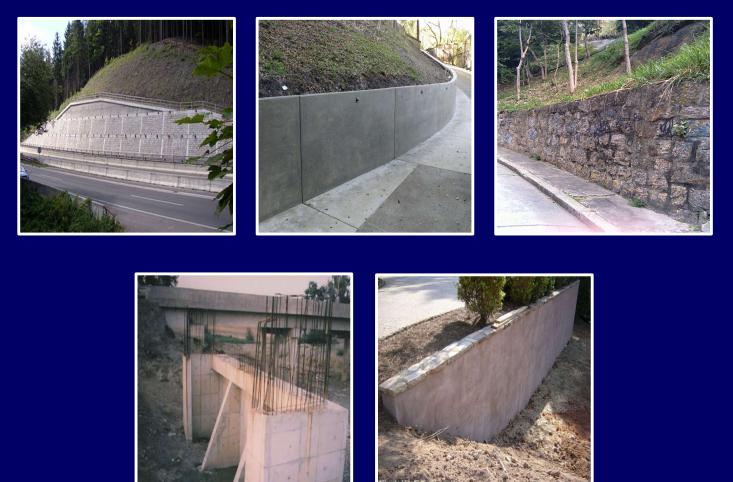
Learning Outcomes

□ At the end of this lecture, students will be able to;

- Identify different types of retaining walls
- > **Explain** failure mechanism of retaining walls
- Analyze and Design RC Cantilever Wall

Introduction

- A retaining wall is a structure that holds or retains soil masses of earth or other loose material behind it.
- Used in the construction of railways, highways, bridges, canals, basement walls in buildings, walls of underground reservoirs, swimming pools etc.

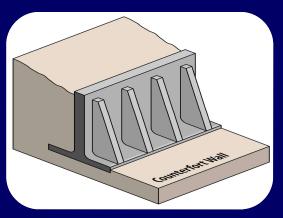


□ Introduction

General

□ Types of Retaining Walls

 Retaining walls are generally classified based on the method of attaining stability against the lateral load imposed by the retained earth.


Gravity Wall

Uses its own weight and that of the retained soil for stability and are either lightly reinforced or contain no reinforcement.

Cantilever Wall

Weight of the soil on the heel of the footing provides the primary contribution to overall stability.

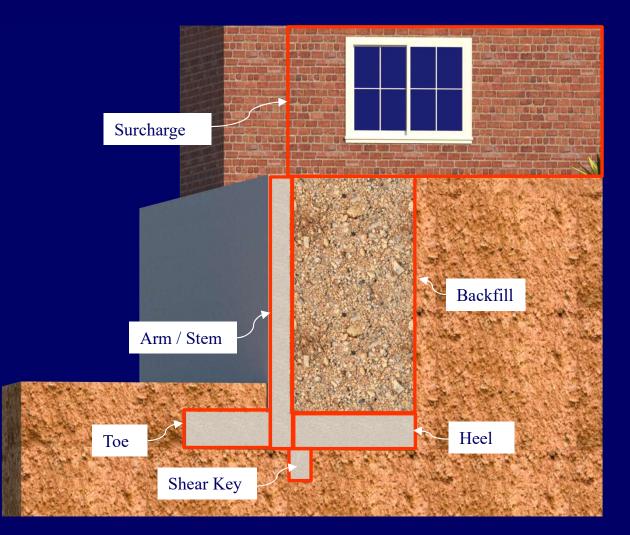
Counterfort Wall

Similar to Cantilever wall but the stem is stiffened by buttresses, to achieve more strength

General

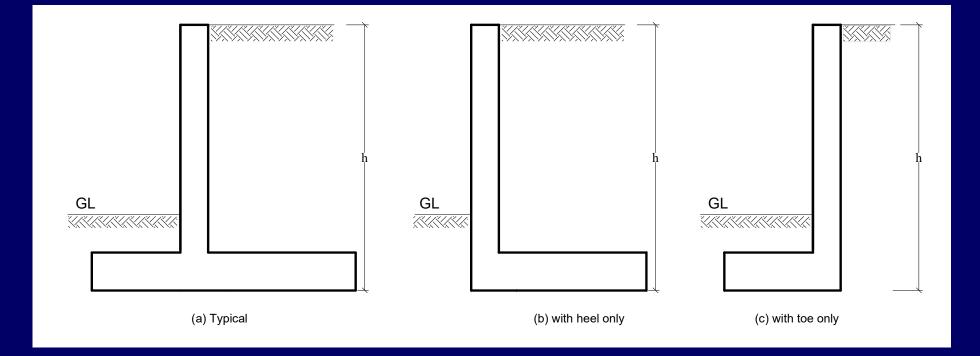
□ Selection of Suitable Type of Retaining Wall

- Gravity walls are economical only for relatively low walls; possibly up to about 10 ft.
- Cantilever Retaining Walls are generally economical up to a height of approximately 20ft.
- For greater heights or for the conditions where the backfill pressure is unusually high, Counterfort or Buttress Retaining Walls are recommended.
- This lecture is only focused on the structural analysis and design of Cantilever retaining wall.

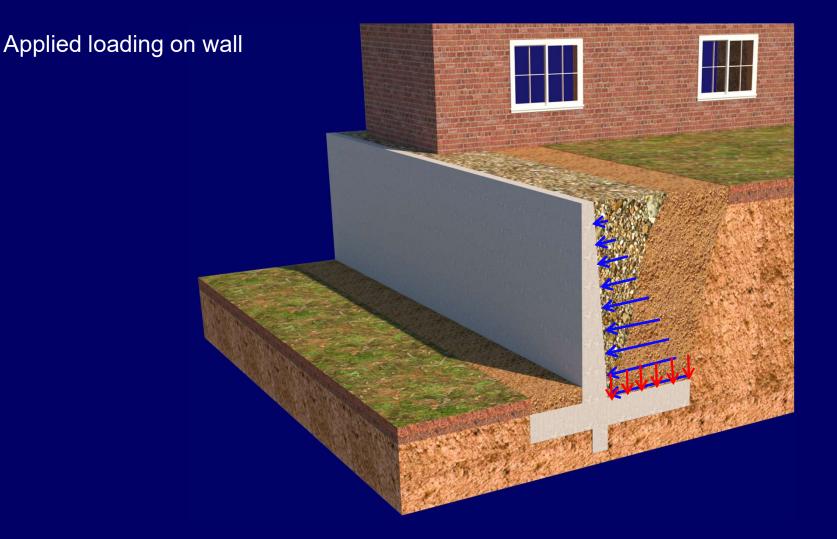


Different Terms Related to Retaining Wall

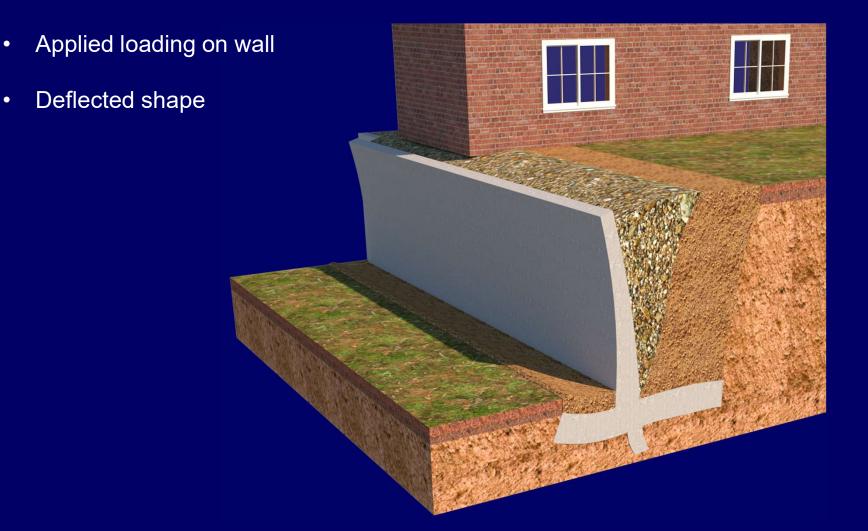
- A typical Cantilever retaining wall is an assembly of the following components
 - 1. Stem: Stem is a Vertical arm that provides horizontal resistance against the overturning force of the soil
 - 2. Base: It is a horizontal footing that is typically divided into two parts, the Toe and the Heel.
 - 3. Key: A key is basically a small vertical element constructed below the footing (base) to increase sliding resistance.
- Illustration of these components have been shown on the next slide.


Different Terms Related to Retaining Wall

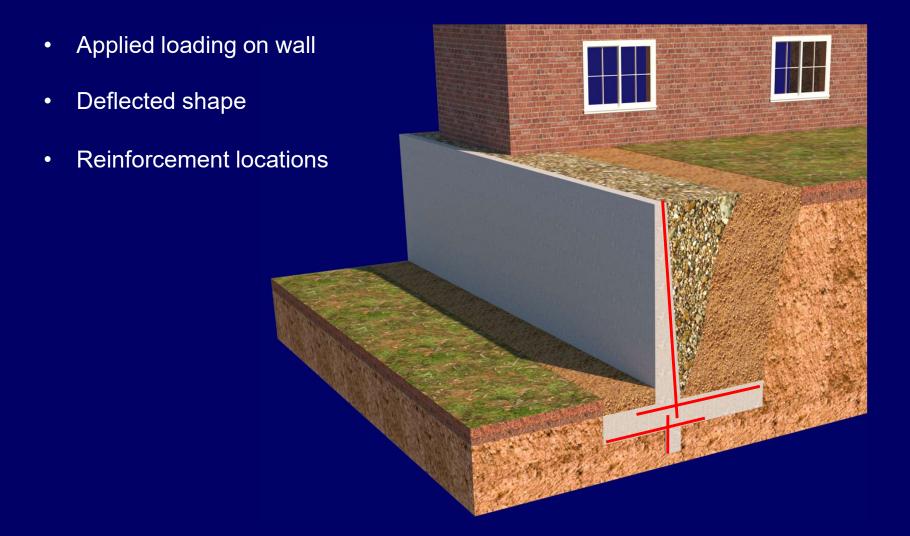
CE 416: Reinforced Concrete Design - II



□ Types of cantilever Retaining Walls


Behavior of Cantilever Retaining Wall

٠



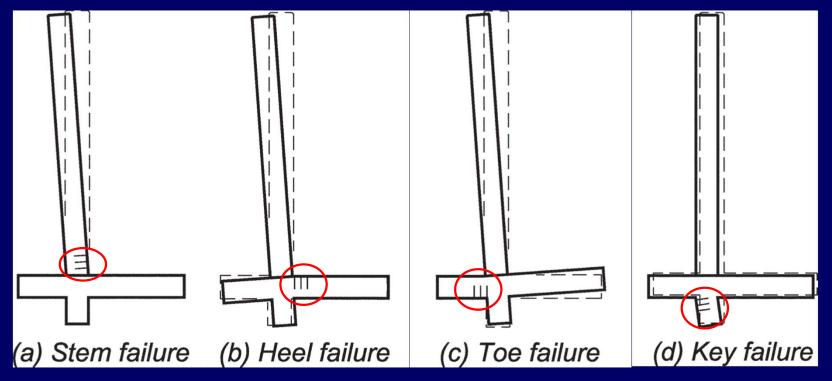
Behavior of Cantilever Retaining Wall

Behavior of Cantilever Retaining Wall


□ Various Failure Modes

- RC retaining wall may fail in two different ways:
- 1. Stability Failure
 - The wall as a whole may be bodily displaced by the earth pressure, without breaking up internally. This can be
 - I. Overturning
 - II. Sliding
 - III. Bearing / Settlement

□ Various Failure Modes


1. Stability Failure

□ Various Failure Modes

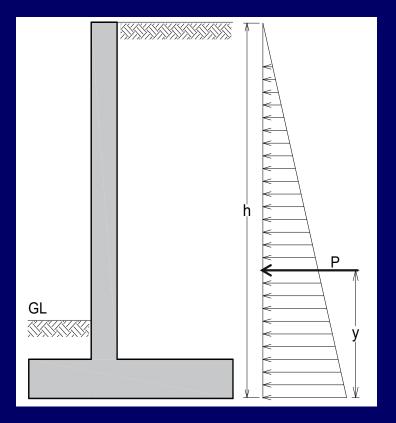
- 2. Body Failure
 - The individual structural parts (stem, toe, heel) of the wall may not be strong enough to resist the acting forces.

□ Various Failure Modes

Animation explaining behavior of Cantilever retaining wall under lateral pressure

Various Conditions of Loading

- 1. Horizontal surface of fill at the top
 - From Rankine's formula, we have


 $p_a = K_a \gamma_s h$ Where, $K_a = \frac{1 - \sin(\emptyset)}{1 + \sin(\emptyset)}$

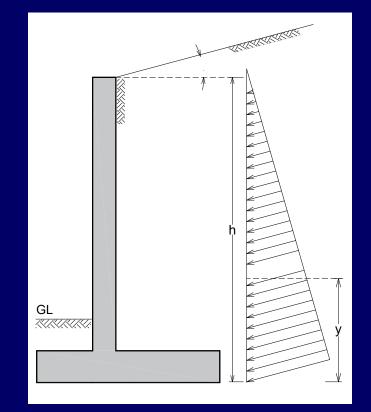
The Resultant of this pressure is

$$P = \frac{1}{2}(p_a)(h) = \frac{1}{2}K_a\gamma_s h^2$$

And the location of "P" from the base is

$$y = \frac{h}{3}$$

Various Conditions of Loading


- 2. Inclined surface of fill at top
 - The Resultant of this pressure is

$$P = \frac{1}{2}(p_a)(h) = \frac{1}{2}K_a\gamma_s h^2$$

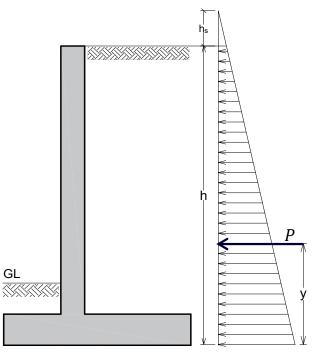
And the location of "P" is given by

$$y = \frac{h}{3}$$

Here, $\delta = \emptyset K_a = \cos \emptyset$

Various Conditions of Loading

- 3. Horizontal surface of fill carrying UDL surcharge
 - The increase in pressure caused by uniform surcharge "S" is computed by converting its load into an equivalent imaginary height of earth h_s above the top of the wall such that,


$$h_s = S/\gamma$$

Then Resultant of pressure is

$$P = \frac{1}{2}K_a\gamma_s h(h+2h_s)$$

And the location of "P" from the base is

$$y = \frac{h^2 + 3hh_s}{3(h + 2h_s)}$$

Soil Parameters

• The following table gives representative values of typical soil parameters, often used in engineering practice.

Table: Unit weight (γ_s), effective angles of internal friction (ϕ '), and the coefficient of friction with concrete (μ)						
	Type of Soil	Typical parameters				
S. No		Unit Weight γ_s (pcf)	Internal friction angle φ' (degrees) ^[1]	Coefficient of friction $\mu^{^{[2]}}$	Remarks	
1	Sand or gravel without fine particles, highly permeable	110 to 120	30 to 40	0.5 to 0.6	Should be used as backfill for retaining walls wherever possible	
2	Sand or gravel with silt mixture, low permeability	120 to 130	25 to 35	0.4 to 0.5		
3	Silty sand, sand and gravel with high clay content	110 to 120	25 to 30	0.3 to 0.4	The value of Φ may be un- conservative under saturated conditions	
4	Medium or stiff clay	100 to 120	25 to 35	0.2 to 0.4		
5	Soft clay, silt	90 to 110	20 to 35	0.2 to 0.3		

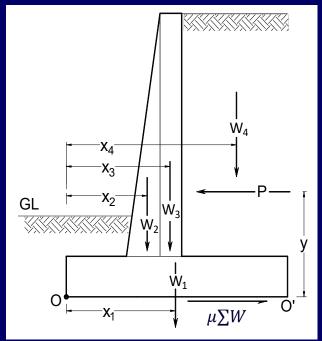
[1] The ϕ values do not account for probable additional pressures due to pore water, seepage, frost, etc.

[2] Coefficient of friction between concrete and various soils.

□ Stability checks

- To evaluate the stability of retaining wall against overturning, sliding and bearing pressure, the following three factors of safety must be computed and compared with recommended values suggested in ACI Reinforced Concrete Design Handbook Volume-2_Special Topics, MNL-17(21).
 - 1. Factor of safety against overturning (FS_{0T})
 - 2. Factor of safety against sliding (FS_{SL})
 - 3. Factor of safety against bearing (FS_{BR})

Stability Checks


- 1. Factor of safety against overturning
 - The factor of safety against overturing about the tip of toe is given by

 $FS_{OT} = \frac{Restoring\ Moment}{Overturning\ moment} = \frac{M_R}{M_{OT}}$

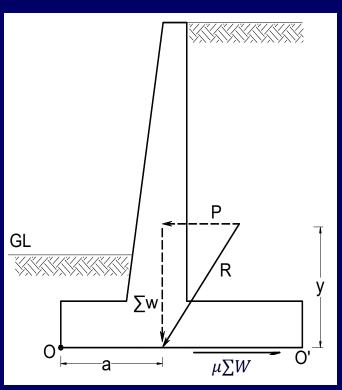
Where;

$$M_{R} = \sum (Wx) = W_{1}x_{1} + W_{2}x_{2} + W_{3}x_{3} + W_{4}x_{4}$$
$$M_{OTM} = P y$$

• General recommended value for factor of safety against overturning FS_{OT} is ≥ 2.0 .

Stability Checks

- 2. Factor of safety against sliding
 - The factor of safety against sliding at base is given by;


$$FS_{SL} = \frac{\mu \sum W}{P}$$

Where;

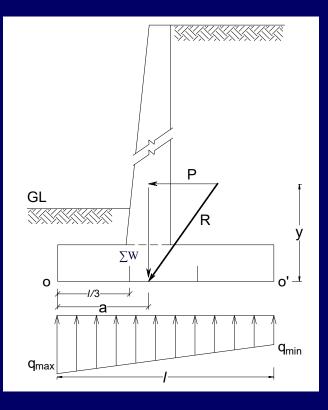
- μ = Coefficient of friction b/w soil and concrete.
- ΣW = Total weight of retaining wall including front fill and backfill.

P =Active soil pressure.

• General recommended value for factor of safety against sliding FS_{SL} is \geq 1.5.

Stability Checks

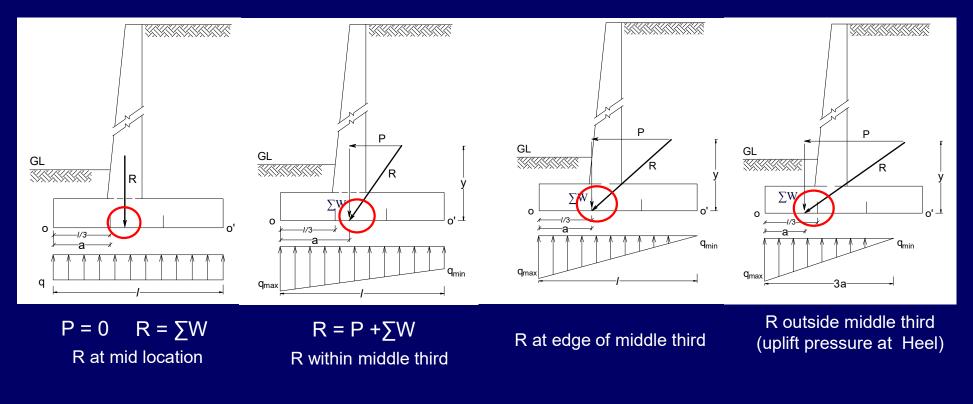
- 3. Factor of safety against bearing
 - The factor of safety against bearing can be determined as;


$$FS_{BR} = \frac{q_a}{q_{max}}$$

Where;

 q_a = Allowable bearing capacity of soil

 q_{max} = Maximum soil bearing pressure

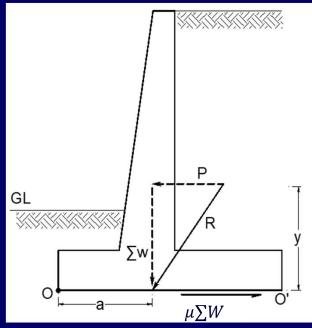

• General recommended value for factor of safety against bearing FS_{BR} is \geq 3.

Stability Checks

- 3. Factor of safety against bearing
 - The bearing pressure diagram of soil below the base, depends on the location of resultant as shown below.

Stability Checks

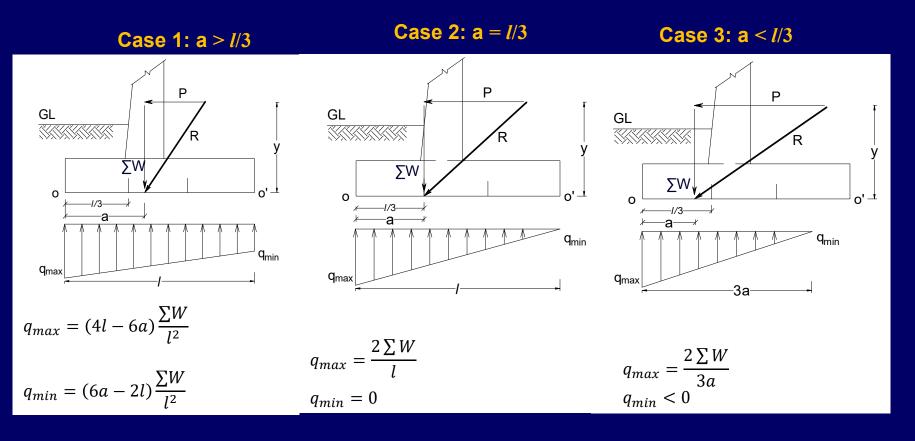
- 3. Factor of safety against bearing
 - Calculation of bearing pressure


Let "a" be the location of resultant R from the exterior end of toe (point O). Then we have;

$$\Delta M = M_R - M_{OT}$$

Since, $\Delta M = (\Sigma W)a$

Therefore, solving for a gives;


$$a = \frac{M_R - M_{OT}}{\sum W}$$

Stability Checks

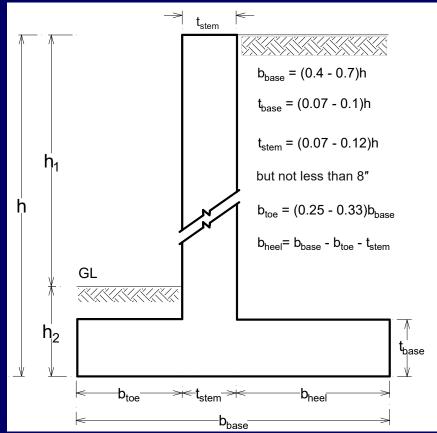
- 3. Factor of safety against bearing
 - Calculation of bearing pressure

CE 416: Reinforced Concrete Design – II

Design Criteria

- The stem of a cantilever retaining wall shall be designed as a one-way slab in accordance with the applicable provisions of Chapter 7 (one way slabs).
 (ACI 318 -19, section 13.3.6.1)
- The base is designed as one-way shallow foundation using applicable provisions of Chapter 7 (one way slabs) and Chapter 9 (Beams).
 (ACI 318 -19, section 13.3.2.1)

Load Combinations


- Load combination relating to structural design of retaining walls shall be in accordance with ACI 318 -19, section 5.3.1.
 - U = 1.2D + 1.6L + 1.6H

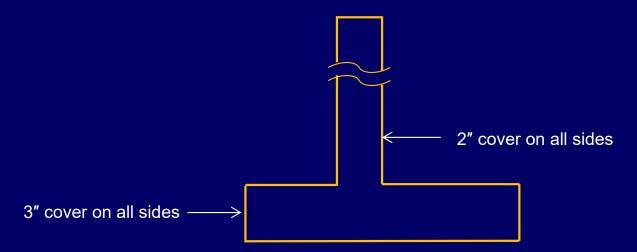
Preliminary Sizes

- ACI recommends the dimensions from the guidelines presented by "Bowels" in the fifth edition of "Foundations Analysis and Design", for preliminary calculations.
- In case of surcharge, "h" is replaced by h_{eq} = h + h_s where;

h_s = height of surcharge

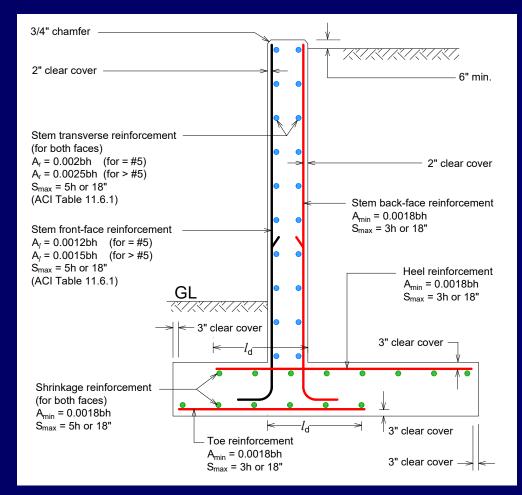
Preliminary Sizes

 The estimated sizes must be checked with the minimum thickness requirements for one-way cantilever slabs provided in ACI 318-19 Table 7.3.1.1


Table 7.3.1.1— Minimum thickness of solid nonprestressed one-way slabs				
Support condition	Minimum h ^[1]			
Simply supported	<i>l</i> /20			
One end continuous	<i>l/</i> 24			
Both ends continuous	l/28			
Cantilever	<i>l/</i> 10			

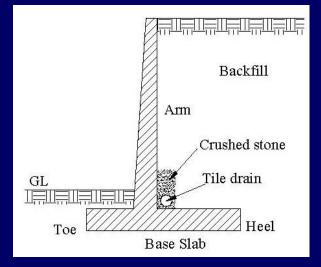
- l = Span length (Center to center length for interior spans, clear projection for cantilevers) (Section 2.2)
- [1] For f_y other than 60,000 psi, the expressions in the table shall be multiplied by $(0.4 + f_y / 100,000)$

Concrete Clear Cover

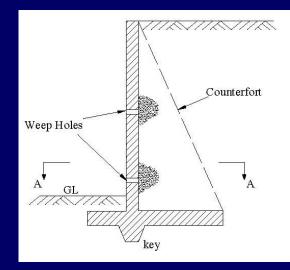

- ACI 318-19, section 20.5.1.3.1,Non-prestressed cast-in-place concrete members shall have specified clear cover for reinforcement at least that given in Table 20.5.1.3.1.
- The minimum specified clear cover is 3 inches for horizontal concrete members cast permanently in contact with the ground, and 2 inches for vertical members.

Reinforcement Limits and Detailing

• Overall reinforcement requirement of retaining wall is shown below:

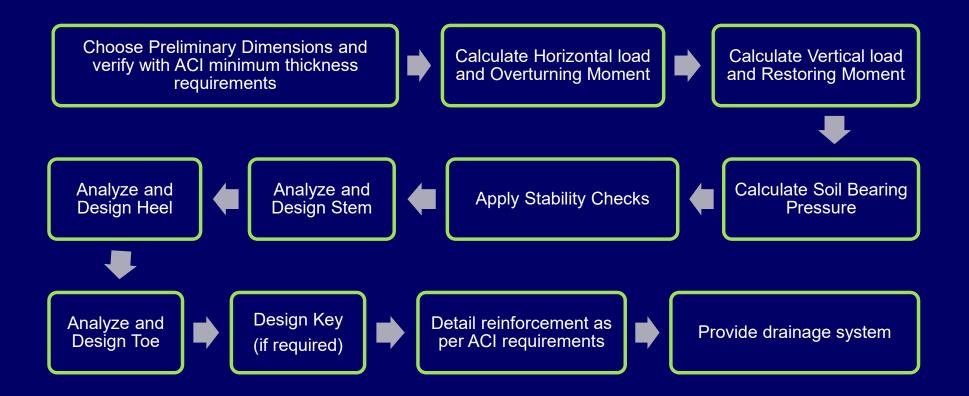


CE 416: Reinforced Concrete Design - II

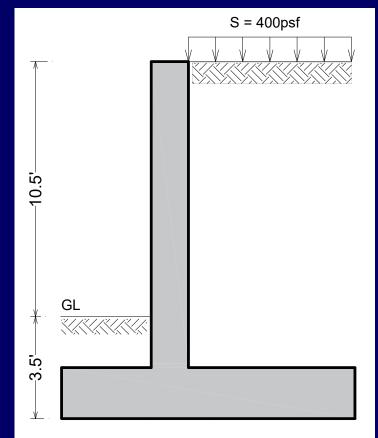


Drainage and Other Details

 A proper drainage system must be provided to retaining wall for collecting and redirecting rainwater away from the wall, otherwise the retaining wall may fail. Drainage can be provided in various ways, but two common ways are:


Longitudinal Drains To prevent outflow to seep into the soil underneath the wall

Weep Holes usually spaced horizontally at an interval of 5 to 10 ft.


Summary of Design Steps

Problem Statement

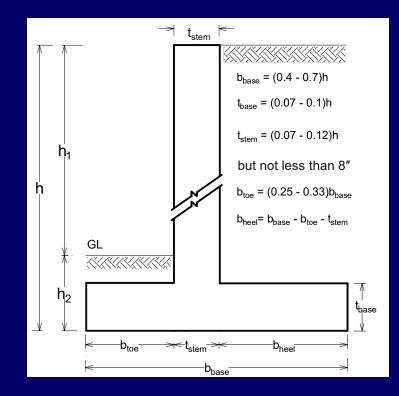
- **Design** the cantilever retaining wall for the following data:
 - Height of stem from GL, h₁ = 10.5'
 - Depth of base from GL, $h_2 = 3.5'$
 - Surcharge, S = 400 psf
 - Allowable bearing capacity, $q_a = 8$ ksf
 - Base friction coefficient, $\mu = 0.6$
 - Internal friction angle , $\emptyset = 30^{\circ}$
 - Unit weight of Soil, $\gamma_s = 120 \text{ pcf}$
 - $f_c' = 4.5 \ ksi \ and \ f_y = 60 \ ksi$

□ Solution

Step 1: Preliminary dimensions

Equivalent depth of surcharge is calculated as

$$h_{s} = \frac{S}{\gamma} = \frac{400}{120} = 3.33'$$


$$h_{eq} = h + h_{s} = 14 + 3.33 = 17.33'$$
Let $b = 0.58h_{eq} = 0.58(17.33) = 3$

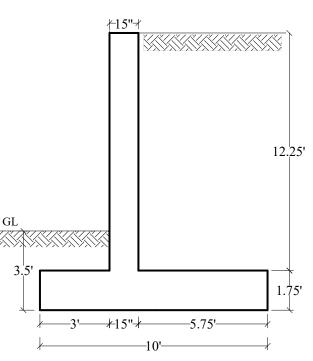
$$t_{base} = 0.1(17.33) \times 12 = 21''$$

$$t_{stem} = 0.07(17.33) \times 12 = 15''$$

$$b_{toe} = 0.3b = 0.3(10) = 3'$$

$$b_{heel} = 10 - 3 - 1.25 = 5.75'$$

0'



Solution

Step 1: Preliminary dimensions

Check the dimensions against the minimum thickness requirements provided in Table 7.3.1.1.

Minimu			
Components	Minimum h	Remarks	
Stem/Arm	$\frac{12.25 \times 12}{10} = 14.7"$	ОК	GL
Heel	$\frac{5.75 \times 12}{10} = 6.9"$	OK	3.5'
Тое	$\frac{3 \times 12}{10} = 3.6"$	ОК	↓3'+15 ↓

CE 416: Reinforced Concrete Design - II

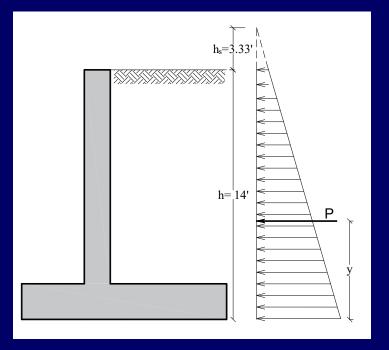
Solution

P = 5.73 kips

> Step 2: Calculation of Horizontal load and Overturning Moment

$$K_{a} = \frac{1 - \sin(\emptyset)}{1 + \sin(\emptyset)} = \frac{1 - \sin(30)}{1 + \sin(30)} = 0.33$$
$$P = \frac{1}{2} [K_{a} \gamma_{s} h(h + 2h_{s})]$$
$$P = \frac{1}{2} [0.33 \times 0.120 \times 14 (14 + 2 \times 3.33)]$$
On solving, we get

$$h_s=3.33'$$


Solution

> Step 2: Calculation of Horizontal load and Overturning Moment

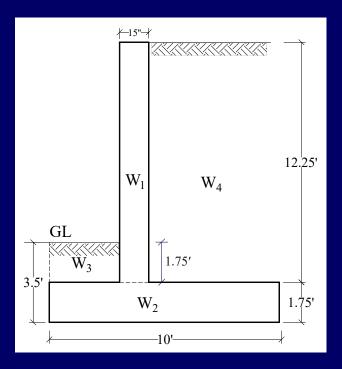
$$y = \frac{h^2 + 3hh_s}{3(h+2h_s)}$$
$$y = \frac{14^2 + 3 \times 14 \times 3.33}{3(14+2\times 3.33)} = 5.42'$$

So, overturning moment about the tip of toe can be determined as,

$$M_{OT} = Py = 5.73 \times 5.42 = 31.06 kip. ft$$

Solution

- > Step 3: Calculation of Vertical load and Restoring Moment
 - Vertical load and restoring or stabilizing moment due to the weight of retaining wall and the soil is calculated and shown below
 - Self weight of Retaining wall


 $W_1 = A_1 \gamma_c = (1.25 \times 12.25)0.150 = 2.30 \ k/ft$

$$W_2 = A_2 \gamma_c = (1.75 \times 10)0.150 = 2.63 \ k/ft$$

Self weight of Soil

 $W_3 = A_3 \gamma_s = (1.75 \times 3)0.120 = 0.63 \ k/ft$

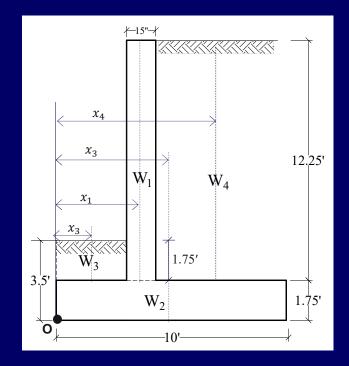
 $W_4 = A_4 \gamma_s = (5.75 \times 12.25)0.120 = 8.45 \, k/ft$

Solution

Step 3: Calculation of Vertical load and Restoring Moment

- Vertical load and restoring or stabilizing moment due to the weight of retaining wall and the soil is calculated and shown below
 - Moment arms about Point O

 ^{r}t


$$x_1 = 3 + \frac{1.25}{2} = 3.63 \, ft$$

$$x_2 = \frac{10}{2} = 5.0f$$

10

$$x_3 = \frac{3}{2} = 1.5 ft$$

$$x_4 = 10 - \frac{5.75}{2} = 7.13 ft$$

CE 416: Reinforced Concrete Design - II

Solution

Step 3: Calculation of Vertical load and Restoring Moment

S. No.	W (kip/ft)	x (ft)	<i>₩x</i> (kip.ft/ft)
1	2.30	2.63	8.35
2	2.63	5.0	13.15
3	0.63	1.5	0.95
4	8.45	7.13	60.25
Sum	14.01		82.69

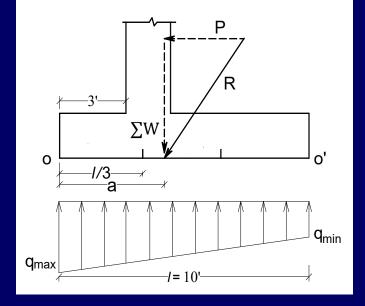
Hence, we get;

Vertical Load, = $\Sigma W = 14.01 \text{kips/ft}$

Restoring Moment, $M_R = \sum Wx = 82.69$ kip. ft/ft

Solution

> Step 4: Calculation of Bearing pressure


To find the point of action "a", we have

$$a = \frac{M_R - M_{OT}}{\Sigma W}$$

$$a = \frac{82.69 - 31.06}{14.01} = 3.68'$$

Now,

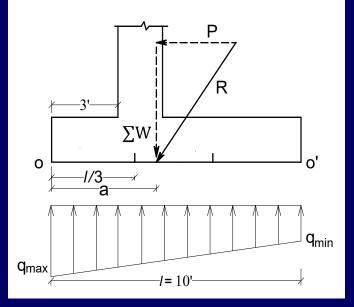
$$\frac{l}{3} = \frac{10}{3} = 3.33' < 3.68'$$

Hence, the resultant lies within the middle third of the base.

Solution

> Step 4: Calculation of Bearing pressure

$$q_{max} = (4l - 6a)\frac{\Sigma W}{l^2}$$


By substituting values;

$$q_{max} = (4 \times 10 - 6 \times 3.68) \frac{14.01}{10^2} = 2.51 ksf$$

Similarly,

$$q_{min} = (6a - 2l)\frac{\Sigma W}{l^2}$$

$$q_{min} = (6 \times 3.68 - 2 \times 10) \frac{14.01}{10^2} = 0.29 ksf$$

□ Solution

- > Step 5: Applying stability checks
 - 1. F.O.S against Overturning

$$FS_{OT} = \frac{M_R}{M_{OT}} = \frac{82.69}{31.06} = 2.67 > 2 \Rightarrow OK!$$

2. F.O.S against Sliding

$$FS_{SL} = \frac{\mu \sum W}{P} = \frac{0.6(14.01)}{5.73} = 1.47 \approx 1.5 \Rightarrow OK!$$

3. FOS against Bearing

$$FS_{BP} = \frac{q_a}{q_{max}} = \frac{8}{2.51} = 3.19 > 2 \Rightarrow OK!$$

□ Solution

- Step 5: Applying stability checks
- Concluding remarks
 - The retaining wall preliminary dimensions are adequate to resist overturning, sliding and prevent bearing failure of soil.
 - In the subsequent steps, each component of retaining wall is designed for strength.
 - If any of the determined dimensions are not satisfactory, then all the previous steps must be revised.

□ Solution

Step 6: Analysis and Design of Stem

Analysis for Shear

General equation of **factored** active earth pressure w.r.t bottom of stem is given by:

$$P_u = 1.6 \left\{ \frac{1}{2} \left[K_a \gamma_s h(h+2h_s) \right] \right\} = 1.6 \{ 0.0198h \ (h+6.66) \}$$

After simplification, we get

 $P_u = 0.0317h^2 + 0.211h - - -(1)$

Solution

Step 6: Analysis and Design of Stem

□ Analysis for Flexure

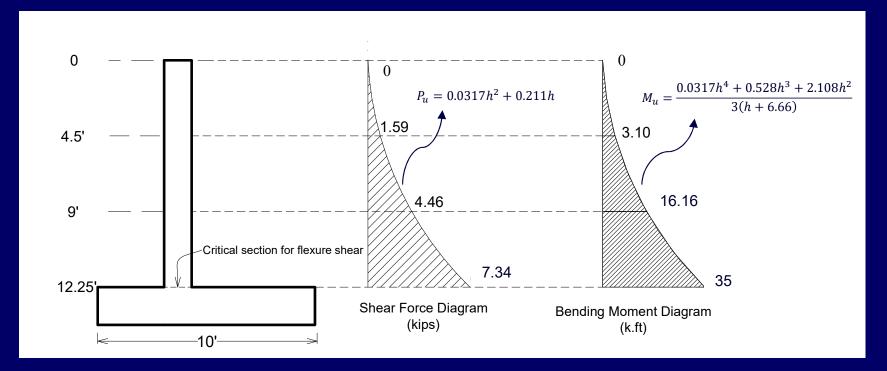
We have
$$M_u = Py$$

 $y = \frac{h^2 + 3hh_s}{3(h + 2h_s)} = \frac{h^2 + 9.99h}{3(h + 6.66)}$

Now general bending moment equation is given by,

$$M_u = P_u y = (0.0317h^2 + 0.211h) \times \frac{h^2 + 9.99h}{3(h + 6.66)}$$

$$M_u = \frac{0.031h^4 + 0.528h^3 + 2.108h^2}{3(h + 6.66)} - -(2)$$


□ Solution

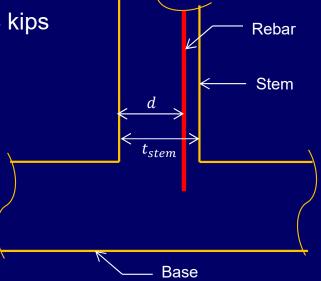
- Step 6: Analysis and Design of Stem
- □ Analysis for Flexure
 - As per ACI 318 -19, section 13.3.6.3, the critical section of stem for both flexure and shear should be taken at the interface between the stem and footing.
 - Using equation (1) and (2) the shear and bending moments diagrams for the stems have been drawn and shown on the next.

Solution

- Step 6: Analysis and Design of Stem
- □ Analysis for Flexure

Solution

Step 6: Analysis and Design of Stem


Design for Shear

From Shear force diagram we have $V_u = 7.34$ kips

$$d = t_{stem} - Cc - \frac{d_b}{2}$$

Using 2" clear cover, and assuming #6 bar,

$$d = 15 - 2 - 6/16 = 12.63'$$

 $= (0.75)2\sqrt{4500} \times 12 \times 12.63 = 15.24 kips$

 $\emptyset V_c > V_u \Rightarrow OK!$

□ Solution

- Step 6: Analysis and Design of Stem
- **Design for Flexure (Vertical reinforcement at the back face)**

For h = 12.25'; M_u = 35.0 ft-kip/ft = 420.0 in-kip/ft

 $A_{s,min} = 0.0018bh = 0.0018(12 \times 15) = 0.324in^2$

$$\emptyset M_n = \emptyset A_s f_y \left(d - \frac{a}{2} \right); \quad \emptyset M_n = 0.9 \times 0.324 \times 60 \left(12.63 - \frac{0.424}{2} \right)$$

 $= 217.18 in.k/ft < M_u$

Therefore, from calculations, $A_s = 0.63$ in², using #6 bar, spacing = 8.4"c/c <u>Maximum spacing for main steel reinforcement is</u>:

• 3h = 3 x 15 = 45" ; 18" => OK! , Hence, finally provide #6 @ 8" c/c

□ Solution

- Step 6: Analysis and Design of Stem
- Design for Flexure (Vertical reinforcement at the back face)

Similarly for other depths, the design is given in tabular form as below:

Table for Design of main bars in Arm of retaining wall									
Depth (ft)	Thickness of arm (in)	Moment (in-kip/ft)	As,min (sq.in)	øMn (in-kip/ft)	Governing Moment	Governing Area of steel	Design spacing	Max spacing	Final spacing
0	15.00	0	0.324	217.18	217.18	0.324	16.3''	18''	@16'' c/c
4.5	15.00	37.2	0.324	217.18	217.18	0.324	16.3''	18''	@16'' c/c
9	15.00	194.88	0.324	217.18	217.18	0.324	16.3''	18''	@8'' c/c
12.25	15.00	420.0	0.324	217.18	420.0	0.63	8.3"	18''	@8'' c/c

From a depth of 12.25 ft to 9 ft, provide #6 @ 8", and from 9 ft to top end, provide #6 @ 16".

□ Solution

- Step 6: Analysis and Design of Stem
- Vertical reinforcement at the front face

 $A_s = 0.0012 \times 12 \times 15 = 0.216 \text{ in}^2$ (From slide No. 31)

Using #4 bar with area $A_b = 0.20$ in²

Spacing = Area of one bar $A_b/A_{st} = (0.20 / 0.216) \times 12 = 11.1"$

Maximum spacing should not exceed;

• 5h = 5 x15 =75" or 18"

Provided spacing is OK!. Finally provide #4 @ 10"

□ Solution

- Step 6: Analysis and Design of Stem
- Horizontal /Transverse reinforcement
 - $A_{st} = 0.0020 bh$ (From slide No. 31)
 - $A_{st} = 0.0020 \times 12 \times 15 = 0.36 \text{ in}^2/\text{ft}$

This is the total required area of horizontal reinforcement, i-e for both faces.

So, for each face, $A_{st} = 0.36/2 = 0.18in^2/ft$

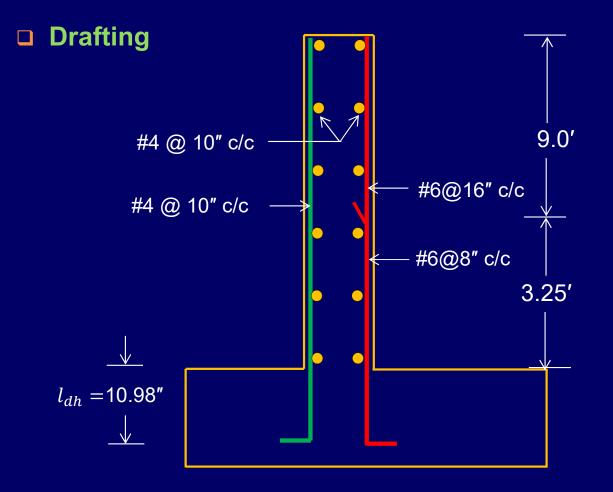
Using #4 bar with $A_{\rm b} = 0.20 \text{in}^2$

Spacing = (0.20/0.18) x 12 = 13.3" < 18" => OK!

Finally, Use #4 @ 10" c/c

Solution

- Step 6: Analysis and Design of Stem
- Calculation of development length


As per ACI 318, section 25.4.3.1, development length l_{dh} for deformed bar, is largest of :

1.
$$\frac{9f_y}{550\sqrt{f_c}}d_b = \frac{9(60000)}{550\sqrt{4500}}(0.75) = 10.98"$$

2. $8d_b = 8(0.75) = 6"$
3. $6"$
Therefore, $l_{dh} = 10.98"$
Since, $l_{dh} = 10.98" < depth of base $\Rightarrow OK!$$

□ Solution

Step 6: Analysis and Design of Stem

Surcharge

3.33'

Design Example

□ Solution

Step 7: Analysis and Design of Heel

□ Loads

		$(n,F') \in \{1,\dots,F'\}^{n}$	
Component	Factored Load (k/ft)		
Self weight of heel	$1.2\gamma h_b = 1.2(0.15)(1.75 \times 1) = 0.32$	Earth fill	,
Earth fill load	$\begin{array}{l} 1.6\gamma hb = 1.6(0.12)(12.25\times 1) \\ = 2.35 \end{array}$		
Surcharge Load	$\begin{array}{l} 1.6\gamma h_s b = 1.6(0.12)(3.33\times 1) \\ = 0.64 \end{array}$		
Total:	W _u = 0.32 +2.35+0.64 = 3.31 k/ft	Heel	

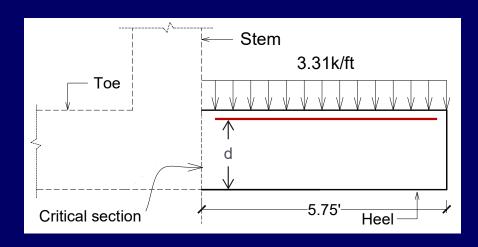
Solution

Step 7: Analysis and Design of Heel

Analysis for Shear

Taking 3" clear cover, and assuming #6 bar,

d = 21 - 3 - 6/16 = 17.63''


Shear force at critical location is,

 $V_u = 3.31 \times (5.75) = 19.0 kips$

□ Analysis for Flexure

$$M_u = 3.31 \times 5.75 \times \left(\frac{5.75}{2}\right)$$

 $M_u = 54.71 ft. kip or 656.62 in. kip/ft$

Solution

Step 7: Analysis and Design of Heel

Design for Shear

From Shear force diagram we have $V_u = 19.0$ kips

Design shear capacity of concrete is given as:

$$\emptyset V_c = \emptyset 2 \sqrt{f_c'} b d$$

 $\emptyset V_c > V_u \Rightarrow OK!$

□ Solution

- Step 7: Analysis and Design of Heel
- **Design for Flexure (Longitudinal reinforcement)**

 $M_{u} = 656.62 \text{ in-kip/ft}$

 $A_{min} = 0.0018bh = 0.0018(12 \times 21) = 0.454in^2$

$$\emptyset M_n = 0.9 \times 0.454 \times 60 \left(17.63 - \frac{0.593}{2} \right) = 424.95 \text{ in. } kip/ft < M_u$$

Therefore, from calculations, $A_s = 0.71$ in², using #6 bar, spacing = 7.44"c/c Maximum spacing for main steel reinforcement is:

• 3h = 3 x 21 = 63"; 18" => OK! Hence, finally provide #6 @ 7" c/c.

Solution

Step 7: Analysis and Design of Heel

Transverse reinforcement

Minimum shrinkage reinforcement is given by

 $A_{shrinkage} = 0.0018bh = 0.0018(12 \times 21) = 0.454in^2/ft$

Divide this equally between two faces,

$$A_{shrinkage} = \frac{0.454}{2} = 0.227 i n^2 / ft$$
 for each face

□ Solution

- Step 7: Analysis and Design of Heel
- **Transverse reinforcement**
 - Using #4 bar with $Ab = 0.20in^2$
 - Spacing = (0.20/0.227) x 12 = 10.57"c/c

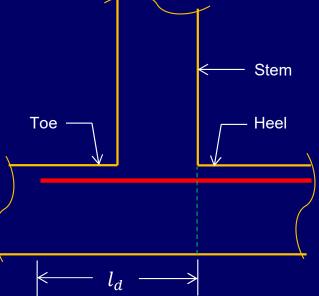
Maximum spacing for shrinkage should be least of

• 5h = 5 x 21 = 105" or 18"

Provided spacing is OK!.

Finally provide #4@10" c/c on top and bottom face of heel

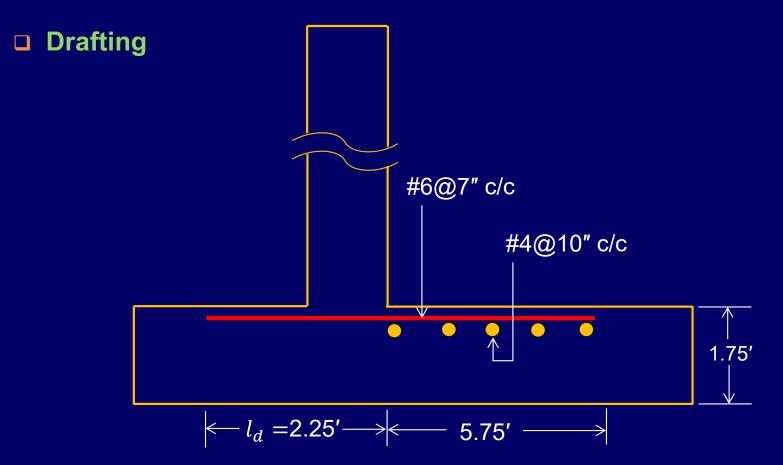
Solution


Step 7: Analysis and Design of Heel

Calculation of development length

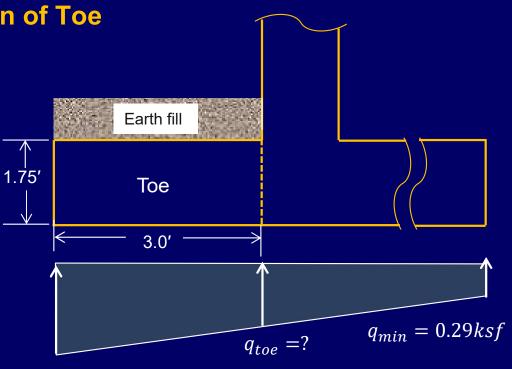
Development length of Heel reinforcement into Toe as per ACI 318-19, section 25.4.2.4 is given by

$$l_d = \frac{0.039 f_y}{\sqrt{f_c'}} d_b$$
$$l_d = \frac{0.039(60000)}{\sqrt{4500}} (0.75) = 26.16" \approx 27"$$


Therefore, $l_d = 2.25'$

Solution

Step 7: Analysis and Design of Heel

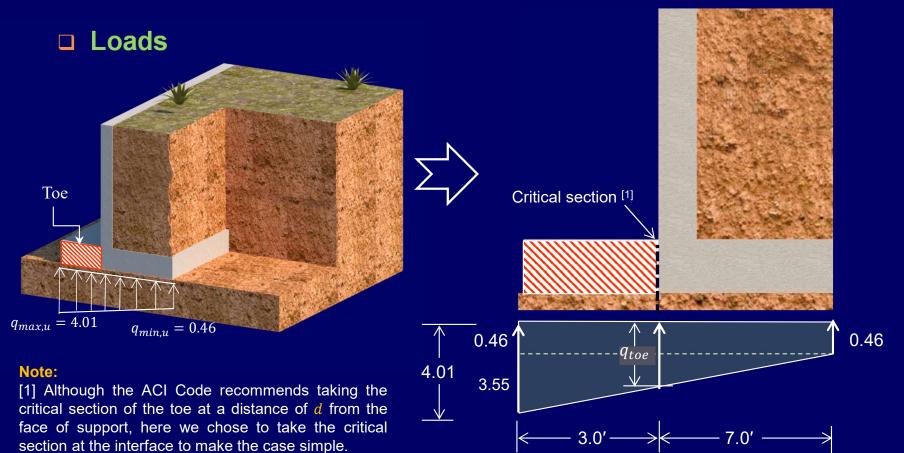

Solution

> Step 8: Analysis and Design of Toe

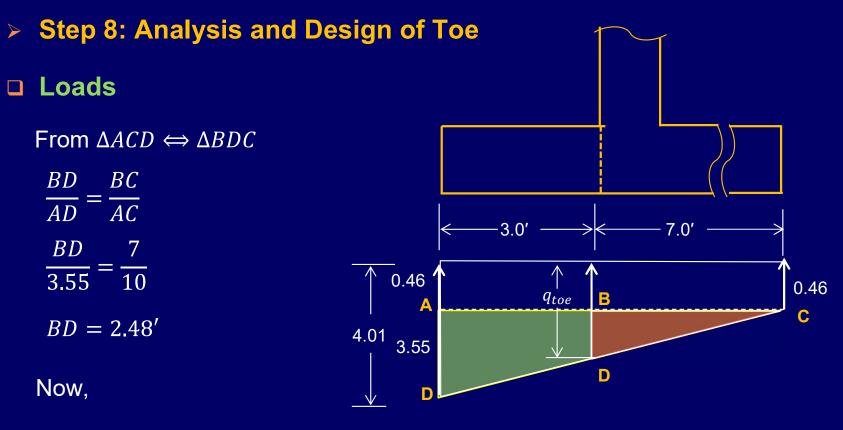
□ Loads

Weight of Earth fill = Ignored Self weight of Toe = Ignored Factored q_{max} = 1.6 x 2.51 = 4.01 Factored q_{min} = 1.6 x 0.29 = 0.46

Now, the factored soil pressure at interior end of toe slab can be determined using similarity of triangles as shown on next slide.



 $q_{max} = 2.51 ksf$


□ Solution

Step 8: Analysis and Design of Toe

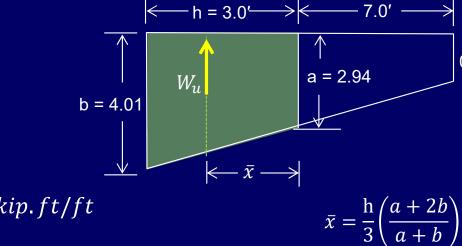
□ Solution

 $q_{toe} = 0.46 + 2.48 = 2.94 ksf$

□ Solution

Step 8: Analysis and Design of Toe

Analysis for Shear


 $V_u = W_u = Area of shaded region$

$$V_u = \frac{4.01 + 2.94}{2} \times 3 = 10.42 kips$$

Analysis for flexure

$$M_u = W_u \times \bar{x} = 10.42\bar{x}$$

From figure, $\bar{x} = 1.58'$

So, $M_u = 10.42 \times 1.58 = 16.46 \ kip.ft/ft$

0.46

Solution

Step 8: Analysis and Design of Toe

Design for Shear

From Shear force diagram we have $V_u = 10.42$ kips

Design shear capacity of concrete is given as:

 $\emptyset V_c > V_u \Rightarrow OK!$

□ Solution

Step 8: Analysis and Design of Toe

Design for Flexure

 $M_u = 16.46x \ 12 = 197.52 \ in-k/ft$

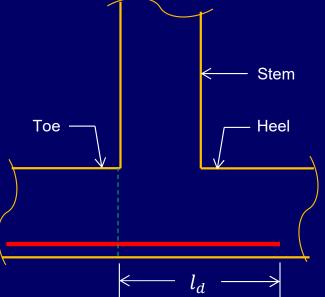
 $A_{s,min} = 0.0018bh = 0.0018(12 \times 21) = 0.454in^2$

$$\emptyset M_n = 0.9 \times 0.454 \times 60 \left(17.63 - \frac{0.593}{2} \right) = 424.95 in. k/ft > M_u$$

Therefore. A_{min} governs. Now using #6 bar, spacing = 11.63"c/c Maximum spacing for main steel reinforcement is:

• 3h = 3 x 21 = 63"; 18" => OK! Hence, finally provide #6 @ 10" c/c

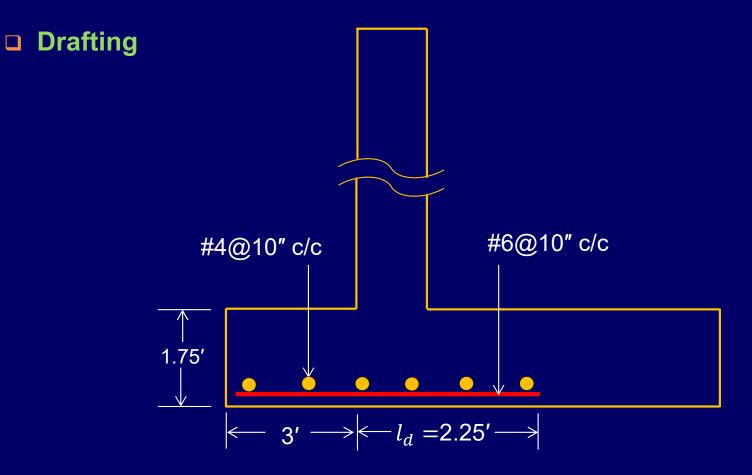
Solution


Step 8: Analysis and Design of Toe

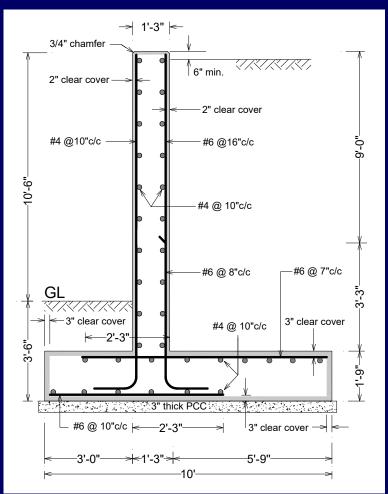
Calculation of development length

Development length of Toe reinforcement into heel as per ACI 318-19, section 25.4.2.4 is given by

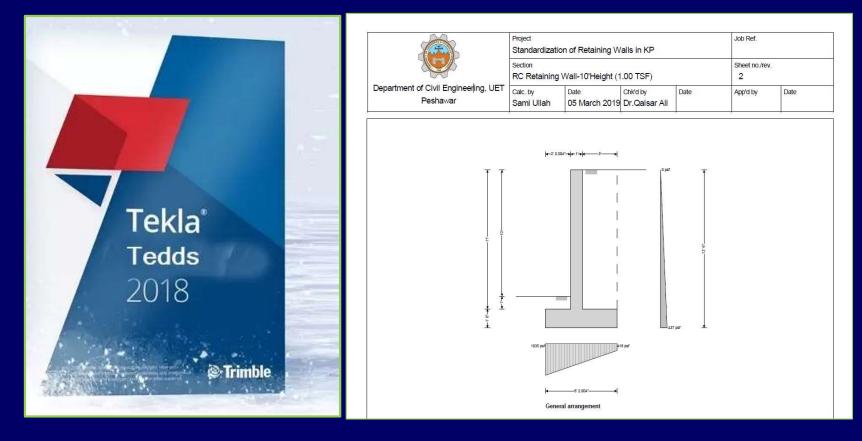
$$l_{d} = \frac{0.039 f_{y}}{\sqrt{f_{c}}} d_{b}$$
$$l_{d} = \frac{0.039(60000)}{\sqrt{4500}} (0.75) = 26.16" \approx 27"$$


Therefore, $l_d = 2.25'$

□ Solution


Step 8: Analysis and Design of Toe

□ Solution


Step 9: Drafting

CE 416: Reinforced Concrete Design - II

Tekla Tedds for Analysis and Design of RC Cantilever Retaining Wall

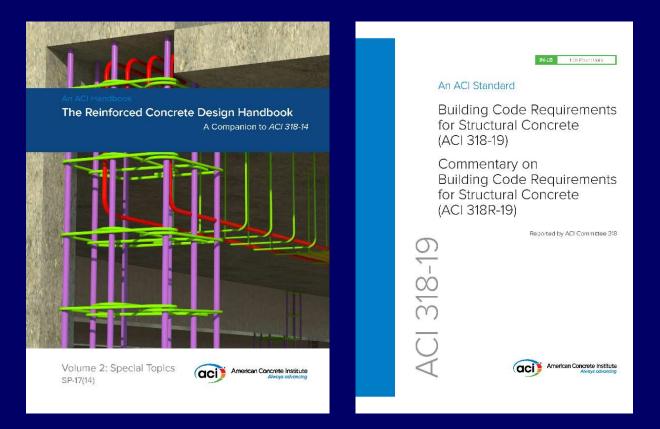
Modular Design of RC Retaining Walls

Height (ft)	Bearing Capacity (Ton/sft)	Drawing
10	1.00	<u>RW-H10-BC1.00</u>
10	1.50	<u>RW-H10-BC1.50</u>
20	1.00	<u>RW-H20-BC1.00</u>
20	1.50	<u>RW-H20-BC1.50</u>
25	1.00	<u>RW-H25-BC1.00</u>
25	1.50	<u>RW-H25-BC1.50</u>

Various failures of Retaining wall at Nathia Gali

Pictures of Retaining Wall Construction

Pictures of Retaining Wall Construction



References

- ACI Reinforced Concrete Design Handbook (Volume: 2)_Special Topics, MNL - 17(21)
- Building Code Requirements for Structural Concrete (ACI 318-19)

