

#### Lecture 05

## Introduction to Earthquake Resistant Design of RC Structures (Part – I)

By:

Prof. Dr. Qaisar Ali

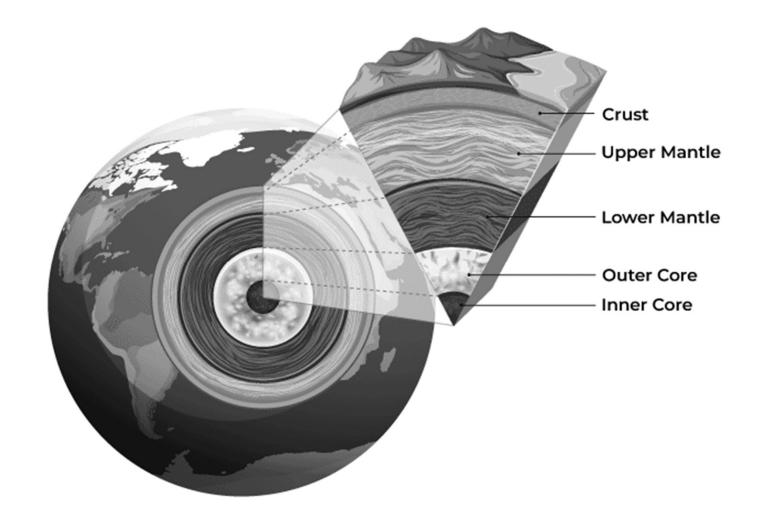
Civil Engineering Department
UET Peshawar

drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com



#### **Lecture Contents**

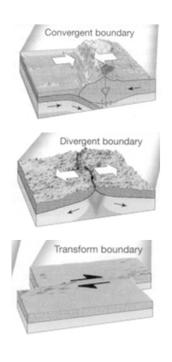
- Introduction to Earthquake and Its Effects on Buildings
- Earthquake Design Philosophy
- Seismic Loading Criteria
- Static Lateral Force Procedure
- Example 5.1
- Introduction to BCP 2021
- References
- Appendix

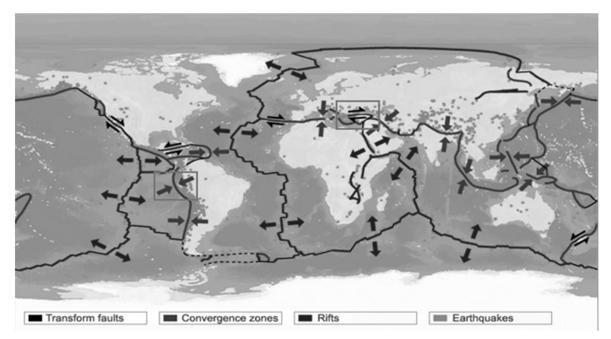



#### **Learning Outcomes**

- ☐ At the end of this lecture, students will be able to;
  - Describe effects of earthquake loading on buildings
  - Explain earthquake design philosophy and seismic loading criteria
  - > Calculate base shear using static lateral force procedures



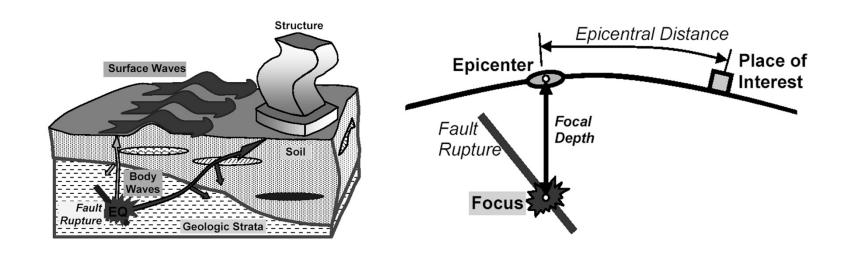

The Earth's Interior






#### The Earth's Interior

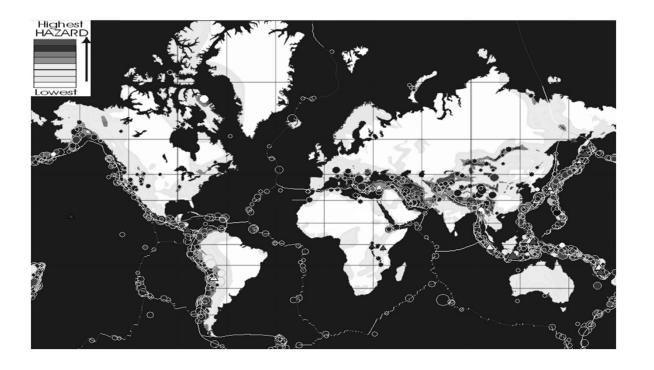
Earthquake results from the sudden movement of the tectonic plates in the earth's crust.







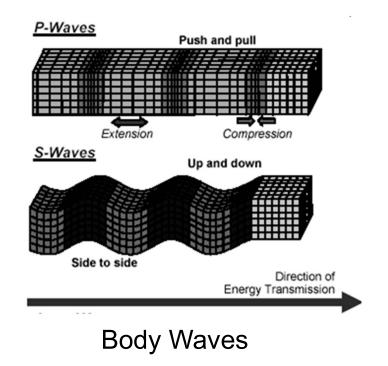

#### ☐ Effect of Earthquake

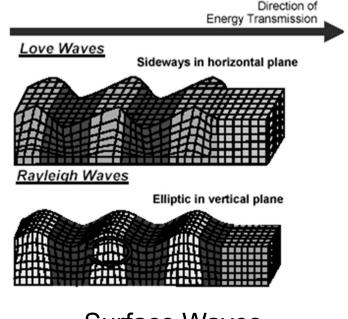

- The movement, taking place at the fault lines, causes energy release which is transmitted through the earth in the form of waves.
- These waves reach the structure causing shaking.





#### □ Seismic Events


- Seismic events around the globe are shown below
- These events mostly take place at boundaries of Tectonic plates




Dots represent an earthquake



□ Types of Waves Generated Due to Earthquake





**Surface Waves** 



Displacement due to Earthquake

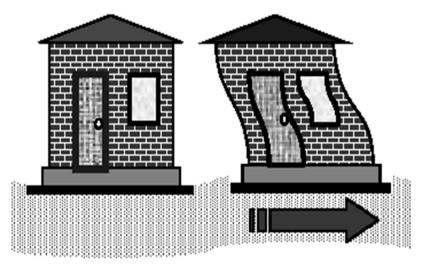



Figure 1: Effect of Inertia in a building when shaken at its base

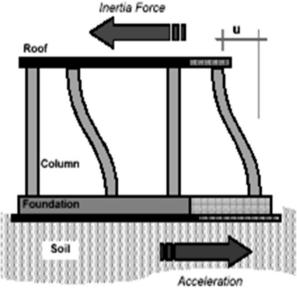



Figure 2: Inertia force and relative motion within a building

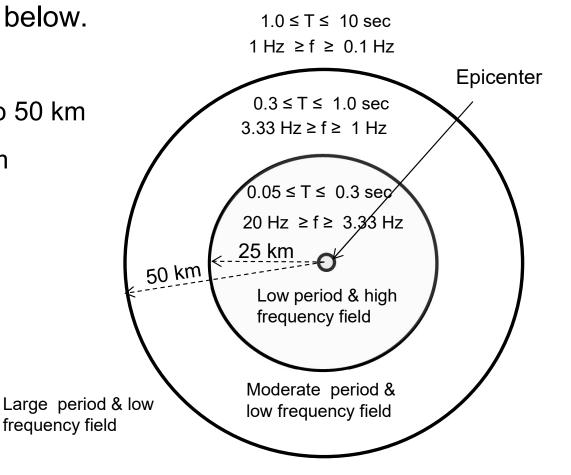


#### **Horizontal and Vertical Shaking**

- Earthquake causes shaking of the ground in all three directions.
- The structures designed for gravity loading (DL+LL) will be normally safe against vertical component of ground shaking.
- The vertical acceleration during ground shaking either adds to or subtracts from the acceleration due to gravity.
- The structures are normally designed for horizontal shaking to minimize the effect of damages due to earthquakes.



#### **Earthquake characteristics**

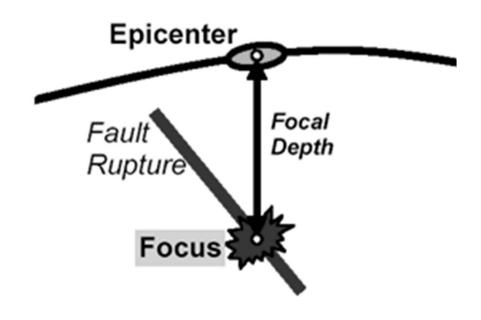

The characteristics of earthquake with respect to distance from

the epicenter are shown below.

1. Near Field: 0 to 25 km

2. Intermediate Field: 25 to 50 km

3. Far Field: Beyond 50 km




Prof. Dr. Qaisar Ali





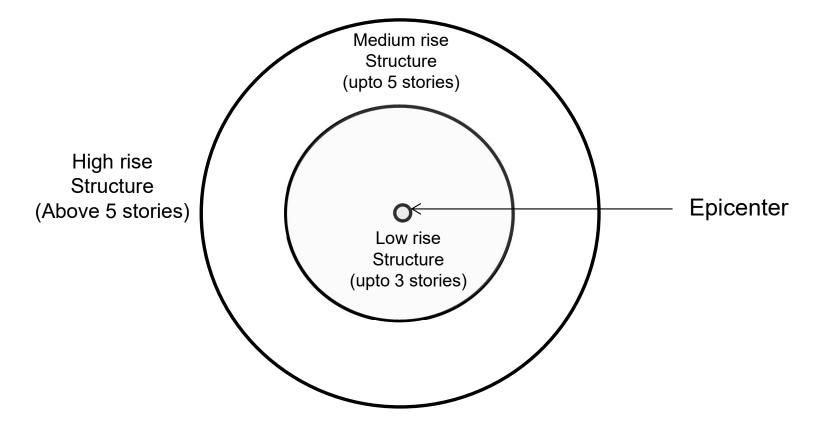
- Types of earthquake based on focal depth
  - **Shallow earthquake:** Depth of focus varies between 0 and 70 km.
  - Deep earthquake: Depth of focus varies between 70 and 700 km. 2.







#### Resonance risk for structures

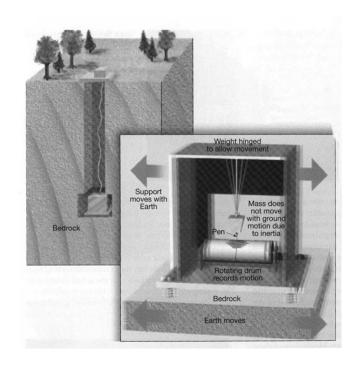

- The natural time period of a structure is its important characteristic to predict behavior during an earthquake of certain time period (Resonance phenomenon).
- For a particular structure, the natural time period is a function of mass and stiffness.

$$T = 2\pi \sqrt{\frac{m}{k}}$$

• "T" can be roughly estimated from: T = 0.1 × number of stories



Resonance risk for structures near, intermediate and far field earthquakes

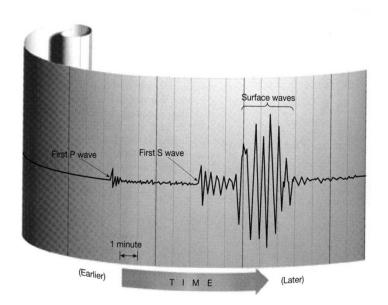





#### Earthquake Recording

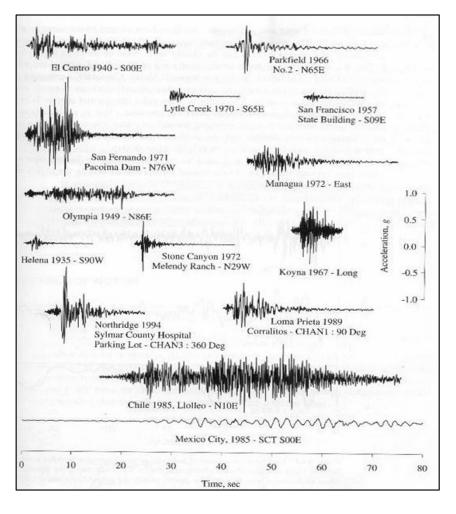
#### \* Seismograph

- Using multiple seismographs around the world, accurate location of the epicenter of the earthquake, as well as its magnitude or size can be determined.
- Working of seismograph shown in figure.



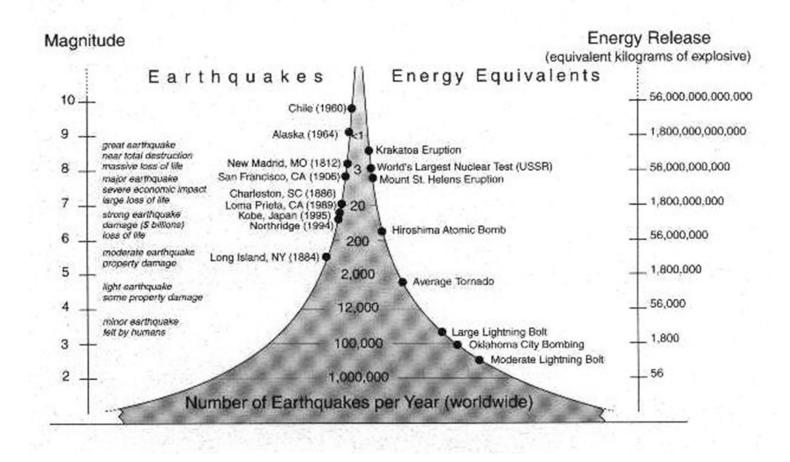



#### **Earthquake Recording**


#### Richter Scale

- In 1935, Charles Richter (US) developed this scale.
- The Richter scale is logarithmic, magnitude So, 5 Richter measurement is ten times greater than a magnitude 4; while it is 10 x 10, or 100 times greater than a magnitude 3 measurement.






- □ Earthquake Recording
  - Some Famous Earthquake Records





#### □ Earthquake Occurrence





#### **Importance of Architectural Features**

- The behavior of a building during earthquakes depend critically on its overall shape, size and geometry, in addition to how the earthquake forces are carried to the ground.
- At the planning stage, architects and structural engineers must work together to ensure that the unfavorable features avoided, and a good building are configuration is chosen

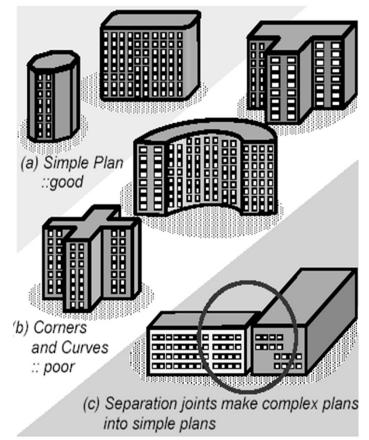
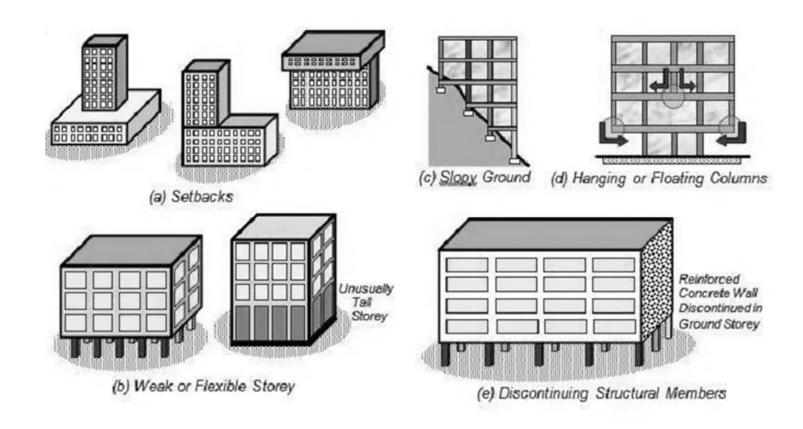
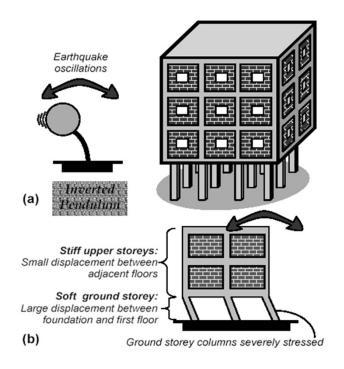




Figure 2: Simple plan shape buildings do well during earthquakes.




**Some Undesirable Scenarios** 



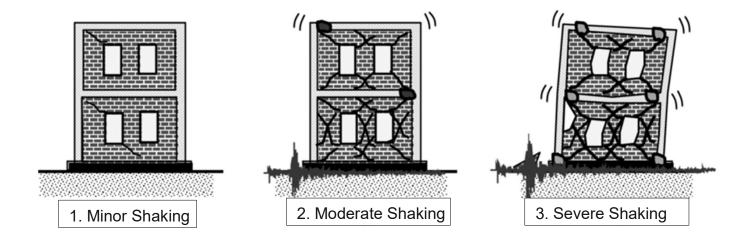


☐ Some Undesirable Scenarios








#### **Earthquake Design Philosophy**

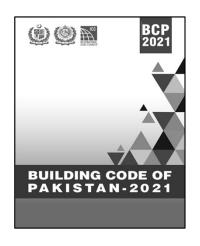
- Designing buildings to respond elastically to earthquakes without suffering any damage might be highly uneconomical.
- Hence, the design philosophy for earthquake resistant design is:
  - "To permit controlled damage in order to make the structure economically viable"



#### **Earthquake Design Philosophy**

- Buildings should be able to resist;
  - Minor Shaking with No/unnoticeable damage 1.
  - Moderate Shaking with Minor to moderate structural damage 2.
  - Severe Shaking with Structural damage, but no collapse 3.






#### Building Code of Pakistan

- Following the 2005 earthquake in Pakistan, the initial Building Code, BCP SP 2007, was developed, mostly adopting the Uniform Building Code 1997 (UBC 97) except for its seismic maps.
- GOVERNMENT OF PRISTAN
  MINISTRY OF HOUSING & WORKS

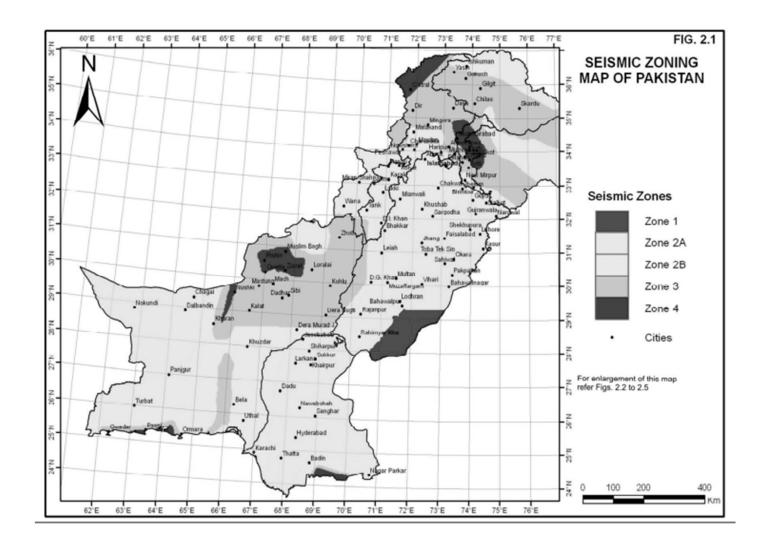
  BUILDING Gode of
  Partistan
  SEISMIC PROVISIONS 2007
- Recently, this code has undergone a revision to BCP 2021, shifting from its previous alignment with UBC 97 to embracing the International Building Code 2021 (IBC 2021).
- In this course, BCP SP 2007 will be followed.

Brief Visit to BCP 2007





#### □ Seismic Zones


 According to BCP-SP 2007, Pakistan has been divided into five seismic zones. These zones are based on the peak ground acceleration ranges summarized in Table below

| S. No | Seismic Zones | Peak Horizontal Ground Acceleration |
|-------|---------------|-------------------------------------|
| 1     | 1             | 0.05 to 0.08g                       |
| 2     | 2A            | 0.08 to 0.16g                       |
| 3     | 2B            | 0.16 to 0.24g                       |
| 4     | 3             | 0.24 to 0.32g                       |
| 5     | 4             | >0.32g                              |

Where; g is the acceleration due to gravity



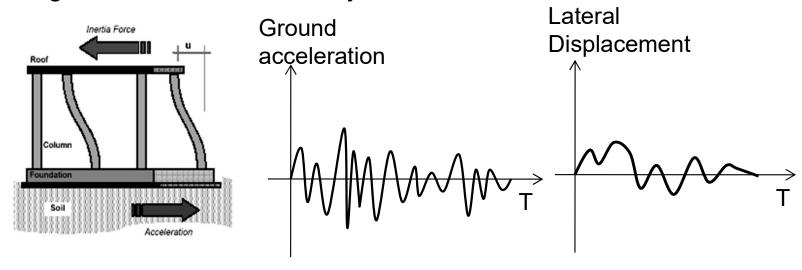
#### □ Seismic Zones





#### □ Determination of Lateral force

- The total design seismic force imposed by an earthquake on the structure at its base is referred to as base shear "V".
- The design seismic force can be determined based on:
  - 1. Dynamic lateral force procedure (Sec. 5.31, BCP-2007)
  - 2. Static lateral force procedure (Sec. 5.30.2, BCP-2007)




#### Determination of Lateral Force

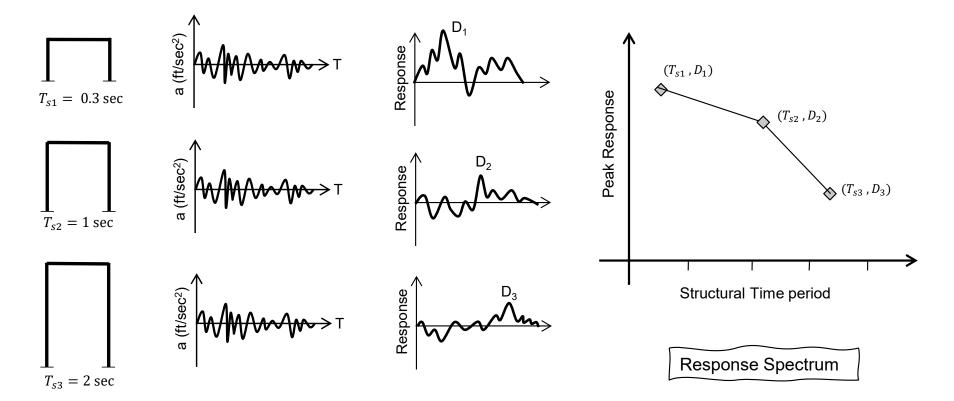
- BCP 5.31 includes information on dynamic lateral force procedures that involve the use of:
  - i. Time history analysis.
  - ii. Response spectrum analysis.
- The details of these methods are presented in sections 5.31.4 and 5.31.6 respectively.



- **Determination of Lateral Force** 
  - **Dynamic Lateral Force Procedure** 
    - Time History Analysis
    - It is the analysis of the dynamic response of a structure at each increment of time when the base is subjected to a specific ground motion time history

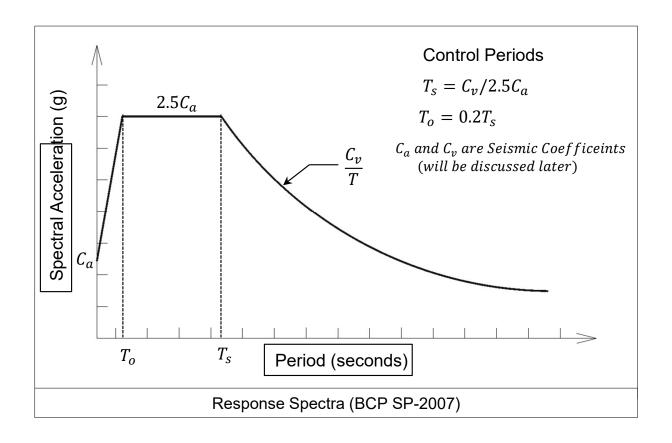





- Determination of Lateral Force
  - 1. Dynamic Lateral Force Procedure
    - ii. Response Spectrum Analysis
    - Response Spectrum is a plot of peak response (acceleration, velocity, displacement) of a structure with respect to its natural time period.
    - RSA is a linear dynamic statistical method that is used for measuring the maximum seismic response of an elastic structure subjected to ground motion.



#### **Determination of Lateral Force**

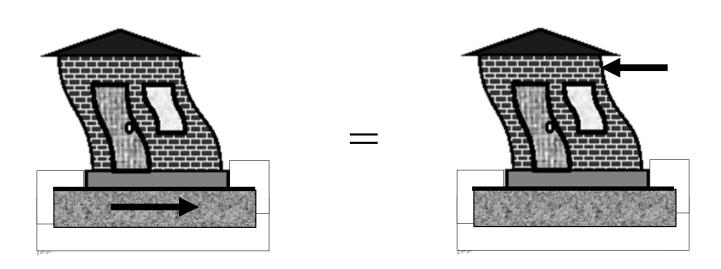

#### **Dynamic Lateral Force Procedure**

Response Spectrum Analysis ii.





- □ Determination of Lateral Force
  - 1. Dynamic Lateral Force Procedure
    - ii. Response Spectrum Analysis






#### **Determination of Lateral Force**

#### 2. Static Lateral Force Procedure (5.30.2)

The equivalent static lateral force method is a simplified technique to transform the effect of dynamic loading of an expected earthquake by a static force.





#### **Determination of Lateral Force**

#### 2. Static Lateral Force Procedure (5.30.2)

The total design base shear (V) in a given direction can be determined from the following formula;

$$V = \frac{C_v I}{RT} W$$

Where;

 $C_v$  = Seismic coefficient (Table 5.16).

I = Seismic importance factor (Table 5.10)

R = Numerical coefficient representative of inherent over strength and global ductility capacity of lateral force-resisting systems (Table 5.13).

W = The total seismic dead load defined in Section 5.30.1.1



- **Determination of Lateral Force** 
  - 2. Static Lateral Force Procedure (5.30.2)
    - **Base Shear Limits**

$$V_{min} = 0.11C_aIW$$

$$V_{max} = \frac{2.5C_aI}{R}W$$

In addition, for seismic zone 4, the total base shear shall also not be

less than; 
$$V = (0.8ZN_vI/R)W$$

Where;  $N_{\nu}$  = near source factor (Table 5.19)

Z = Seismic zone factor (Table 5.9)



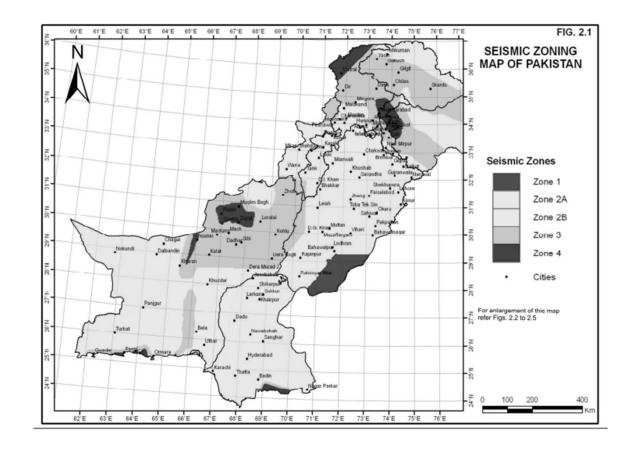
#### **Static Lateral Force Procedure**

- ☐ Steps involved in determination of Base Shear
  - Step 1: Find Site Specific details
  - Step 2: Select Seismic Coefficients
  - Step 3: Select Seismic Importance factor
  - Step 4: Select Response Modification factor
  - > Step 5: Determine structure's time period
  - Step 6: Calculate base shear and apply base shear limits
  - Step 7: Distribute base shear in vertical direction



- ☐ Step 1: Find Site Specific Details
  - Following list of data needs to be obtained:
    - i. Seismic Zone
    - ii. Soil Profile Type
    - iii. Past earthquake magnitude (required only for Zone 4).
    - iv. Closest distance to known seismic source (required only for Zone 4).




## ☐ Step 1: Find Site Specific Details

#### i. Seismic Zone

- Seismic Zone for a given site can be selected from the seismic zoning map of the country.
- The seismic zoning map of Pakistan is given in Figure 2.1, while Seismic zoning map of each province have been provided in Figures 2.2 to 2.5 of BCP-SP 2007, are shown in next slides.
- Table 2.2 of BCP lists the seismic zones for all tehsils of the country. This table has been included as an appendix to this Lecture.



- ☐ Step 1: Find Site Specific Details
  - Seismic Zone





### ☐ Step 1: Find Site Specific Details

#### Seismic Zone

After selecting the Seismic zone, Seismic zone factor Z can be chosen from 5.9 of BCP SP 2007.

| Table 5.9 —Seismic Zone Factor Z |       |      |      |      |      |
|----------------------------------|-------|------|------|------|------|
| Zone                             | 1     | 2A   | 2B   | 3    | 4    |
| Z                                | 0.075 | 0.15 | 0.20 | 0.30 | 0.40 |



### ☐ Step 1: Find Site Specific Details

### **Soil Profile Type**

 Soil Profile Types have been defined in Table 4.1 of BCP SP 2007.

| Table 4.1 — Soil Profile Types |                                         |                                                     |                    |                                   |  |
|--------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------|-----------------------------------|--|
| Soil                           |                                         | Average Soil Properties for Top 100ft of Soil Profi |                    |                                   |  |
| Profile<br>Type                | Generic Description                     | Shear wave velocity (ft/s)                          | SPT<br>N(blows/ft) | Undrained Shear<br>Strength (psf) |  |
| $S_A$                          | Hard rock                               | > 4920                                              |                    |                                   |  |
| $S_B$                          | Rock                                    | 2460 to 4920                                        |                    |                                   |  |
| $S_C$                          | Very dense Soil & soft Rock             | 1150 to 2460                                        | > 50               | > 2000                            |  |
| $S_D$                          | Stiff soil Profile                      | 575 to 1150                                         | 15 to 50           | 1000 to 2000                      |  |
| $S_E$                          | Soft soil                               | < 575                                               | < 15               | < 1000                            |  |
| $S_F$                          | Soil requiring site-specific Evaluation |                                                     |                    |                                   |  |



## ☐ Step 1: Find Site Specific Details

#### **Past Earthquake Magnitude** ii.

This is required only for seismic zone 4 to decide about seismic source type.

| Table 5.20 —Seismic Source Type |                                                                                                                       |                                       |                            |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|--|--|
| Seismic<br>Source Type          | Seismic Source Description                                                                                            | Maximum<br>moment<br>Magnitude        | Slip Rate<br>(mm/yr)       |  |  |
| А                               | Faults that can produce large magnitude events and that have high rate of seismic activity                            | $M \ge 7.0$                           | $SR \ge 5$                 |  |  |
| В                               | All faults other than Types A and C                                                                                   | $M \ge 7.0$<br>M < 7.0<br>$M \ge 6.5$ | SR < 5<br>SR > 5<br>SR < 5 |  |  |
| С                               | Faults that are not capable of producing large magnitude events and that have relatively low rate of seismic activity | M < 6.5                               | <i>SR</i> ≤ 2              |  |  |



- ☐ Step 1: Find Site Specific Details
  - **Distance to Known Seismic Source** ii.
    - Distance to known seismic source is also required to determine additional coefficients for zone 4.



## ☐ Step 2: Determination of Seismic Coefficients

• The values of seismic acceleration coefficient  $C_a$  can be taken from Table 5.16 of BCP SP 2007.

| Table 5.16 —Seismic Coefficients $C_a$ |           |                        |          |         |                            |  |
|----------------------------------------|-----------|------------------------|----------|---------|----------------------------|--|
| Soil Profile                           |           | Seismic Zone Factor, Z |          |         |                            |  |
| Туре                                   | Z = 0.075 | Z = 0.15               | Z = 0.20 | Z = 0.3 | Z = 0.4                    |  |
| $S_A$                                  | 0.06      | 0.12                   | 0.16     | 0.24    | 0.32 <i>N</i> <sub>a</sub> |  |
| $S_B$                                  | 0.08      | 0.15                   | 0.20     | 0.30    | 0.40 <i>N</i> <sub>a</sub> |  |
| $S_C$                                  | 0.09      | 0.18                   | 0.24     | 0.33    | 0.40 <i>N</i> <sub>a</sub> |  |
| $S_D$                                  | 0.12      | 0.22                   | 0.28     | 0.36    | 0.44 <i>N</i> <sub>a</sub> |  |
| $S_E$                                  | 0.19      | 0.30                   | 0.34     | 0.36    | 0.36 <i>N</i> <sub>a</sub> |  |
| $S_F$                                  |           | See Footnote 1         |          |         |                            |  |

<sup>[1]</sup> Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type  $S_F$ .



### ☐ Step 2: Determination of Seismic Coefficients

• The values of seismic velocity coefficient  $C_v$  can be taken from Table 5.17 of BCP SP 2007.

| Table 5.17 —Seismic Coefficients $\mathcal{C}_v$ |           |                        |              |         |                            |  |
|--------------------------------------------------|-----------|------------------------|--------------|---------|----------------------------|--|
| Soil Profile                                     |           | Seismic Zone Factor, Z |              |         |                            |  |
| Type                                             | Z = 0.075 | Z = 0.15               | Z = 0.20     | Z = 0.3 | Z = 0.4                    |  |
| $S_A$                                            | 0.06      | 0.12                   | 0.16         | 0.24    | $0.32N_{v}$                |  |
| $S_B$                                            | 0.08      | 0.15                   | 0.20         | 0.30    | $0.40N_{v}$                |  |
| $S_C$                                            | 0.13      | 0.25                   | 0.32         | 0.45    | $0.56N_{v}$                |  |
| $S_D$                                            | 0.18      | 0.32                   | 0.40         | 0.54    | 0.64 <i>N</i> <sub>v</sub> |  |
| $S_E$                                            | 0.26      | 0.50                   | 0.64         | 0.84    | $0.96N_{v}$                |  |
| $S_F$                                            |           | S                      | See Footnote | 1       |                            |  |

<sup>[1]</sup> Site-specific geotechnical investigation and dynamic site response analysis shall be performed to determine seismic coefficients for Soil Profile Type  $S_F$ .



### **Step 2: Determination of Seismic Coefficients**

• The values  $N_a$  and  $N_v$  can be taken from Tables 5.18 & 5.19 of BCP SP 2007. These values are required for Zone 4 only.

| Table 5.18 —Near Source Factor, N <sub>a</sub> |               |                                          |         |  |  |
|------------------------------------------------|---------------|------------------------------------------|---------|--|--|
| Seismic Source                                 | Closest Dista | Closest Distance To Known Seismic Source |         |  |  |
| Туре                                           | ≤ 2 km        | 5 km                                     | ≥ 10 km |  |  |
| Α                                              | 1.5           | 1.2                                      | 1.0     |  |  |
| В                                              | 1.3           | 1.0                                      | 1.0     |  |  |
| С                                              | 1.0           | 1.0                                      | 1.0     |  |  |



### **Step 2: Determination of Seismic Coefficients**

• The values  $N_a$  and  $N_v$  can be taken from Tables 5.18 & 5.19 of BCP SP 2007. These values are required for Zone 4 only.

| Table 5.19 —Near Source Factor, $N_{v}$ |                                          |         |     |     |  |  |
|-----------------------------------------|------------------------------------------|---------|-----|-----|--|--|
| Seismic Source                          | Closest Distance To Known Seismic Source |         |     |     |  |  |
| Туре                                    | 10 km                                    | ≥ 15 km |     |     |  |  |
| Α                                       | 2                                        | 1.6     | 1.2 | 1.0 |  |  |
| В                                       | 1.6                                      | 1.2     | 1.0 | 1.0 |  |  |
| С                                       | 1.0                                      | 1.0     | 1.0 | 1.0 |  |  |



- ☐ Step 3: Determination of Seismic Importance Factor
  - Based on the occupancy category, Seismic Importance Factor "I" can be selected from Table 5.10 of BCP SP 2007.



## ☐ Step 3: Determination of Seismic Importance Factor

| Table 5.10 — Occupancy Category |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Occupancy Category              | Occupancy or Function of Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seismic<br>Importance factor,<br>I |  |  |
| Essential facilities            | <ul> <li>Group I, Division 1 Occupancies having surgery and emergency treatment areas</li> <li>Fire and police stations</li> <li>Garages and shelters for emergency vehicles and emergency aircraft Structures and shelters in emergency-preparedness centers</li> <li>Aviation control towers</li> <li>Structures and equipment in government communication centers and other facilities required for emergency response</li> <li>Standby power-generating equipment for Category 1 facilities</li> <li>Tanks or other structures containing housing or supporting water or other</li> <li>fire-suppression material or equipment required for the protection of Category 1, 2 or 3 structures</li> </ul> | 1.25                               |  |  |
| Hazardous facilities            | <ul> <li>Group H, Divisions 1, 2, 6 and 7 Occupancies and structures therein housing or supporting toxic or explosive chemicals or substances</li> <li>Nonbuilding structures housing, supporting or containing quantities of toxic or explosive substances that, if contained within a building, would cause that building to be classified as a Group H, Division 1, 2 or 7 Occupancy</li> </ul>                                                                                                                                                                                                                                                                                                         | 1.25                               |  |  |



## ☐ Step 3: Determination of Seismic Importance Factor

| Table 5.10 — Occupancy Category     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Occupancy Category                  | Occupancy or Function of Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Seismic<br>Importance factor,<br>I |  |  |
| Special Occupancy<br>Category       | <ul> <li>Group A, Divisions 1, 2 and 2.1 Occupancies</li> <li>Buildings housing Group E, Divisions 1 and 3 Occupancies with a capacity greater than 300 students</li> <li>Buildings housing Group B Occupancies used for college or adult education with a capacity greater than 500 students</li> <li>Group I, Divisions 1 and 2 Occupancies with 50 or more resident incapacitated patients, but not included in Category 1</li> <li>Group I, Division 3 Occupancies</li> <li>All structures with an occupancy greater than 5,000 persons</li> <li>Structures and equipment in power-generating stations, and other public utility facilities not included in Category 1 or Category 2 above, and required for continued operation</li> </ul> | 1.00                               |  |  |
| Standard<br>occupancy<br>structures | All structures housing occupancies or having functions not listed in Category 1, 2 or 3 and Group U Occupancy towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00                               |  |  |
| Miscellaneous structures            | Group U Occupancies except for towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                               |  |  |



## ☐ Step 4: Determination of Response Modification Factor

- Response modification factor basically reduces base shear "V" to make the system economical.
- However, the structure will suffer some damage as explained in the earthquake design philosophy.
- R depends on overall structural response of the structure under lateral loading. For structures exhibiting good performance, R will be high.



## ☐ Step 4: Determination of Response Modification Factor

| Table 5.13 – Structural Systems |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
| Basic Structural System         | Lateral Force resisting System Description                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                    |  |  |
| 1. Bearing wall system          | <ol> <li>Light-framed walls with shear panels         <ul> <li>Wood structural panel walls for structures three stories or less</li> <li>All other light-framed walls</li> </ul> </li> <li>Shear walls         <ul> <li>Concrete</li> <li>Masonry</li> </ul> </li> <li>Light steel-framed bearing walls with tension-only bracing</li> <li>Braced frames where bracing carries gravity load         <ul> <li>Steel</li> <li>Concrete</li> <li>Heavy timber</li> </ul> </li> </ol> | 5.5<br>4.5<br>4.5<br>4.5<br>2.8<br>4.4<br>2.8<br>2.8 |  |  |



## ☐ Step 4: Determination of Response Modification Factor

| Table 5.13 – Structural Systems |                                                                                                                                                                                        |                          |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Basic Structural System         | Lateral Force resisting System Description                                                                                                                                             | R                        |  |  |
|                                 | 1. Steel eccentrically braced frame (EBF)                                                                                                                                              | 7                        |  |  |
| 2. Building frame system        | 2. Light-framed walls with shear panels  a. Wood structural panel walls for structures three stories or less b. b. All other light-framed walls  3. Shear walls a. Concrete b. Masonry | 6.5<br>5<br>5.5<br>5.5   |  |  |
|                                 | 4. Ordinary braced frames  a. Steel  b. Concrete  c. Heavy timber  5. Special concentrically braced frames                                                                             | 5.6<br>5.6<br>5.6<br>6.4 |  |  |



## ☐ Step 4: Determination of Response Modification Factor

| Table 5.13 – Structural Systems  |                                                                                                                                                                                                                  |                          |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Basic Structural System          | Lateral Force resisting System Description                                                                                                                                                                       | R                        |  |  |
| 3. Moment-resisting frame system | 1. Special moment-resisting frame (SMRF) a. Steel b. Concrete  2. Masonry moment-resisting wall frame (MMRWF)  3. Concrete intermediate moment-resisting frame (IMRF)  4. Ordinary moment-resisting frame (OMRF) | 8.5<br>8.5<br>6.5<br>5.5 |  |  |
|                                  | a. Steel b. Concrete                                                                                                                                                                                             | 3.5                      |  |  |
|                                  | 5. Special truss moment frames of steel (STMF)                                                                                                                                                                   | 6.5                      |  |  |

The Table additionally provides the R-Factor values for other structural systems such as Dual Systems, Cantilevered Column Building Systems, Shear Wall-Frame Interaction Systems, and Undefined Systems.



## **Step 5: Determination of Response Modification Factor**

- Structural Period (5.30.2.2)
  - For all buildings, the value T may be approximated from the following formula:

$$T = C_t (h_n)^{3/4}$$

Where;

 $C_t = 0.035$  for steel moment-resisting frames.

 $C_t = 0.030$  for reinforced concrete moment-resisting frames and eccentrically braced frames.  $C_t = 0.020$  for all other buildings.

 $h_n$  = Actual height (feet or meters) of the building above the base to the nth level.



Step 6: Calculation of Base shear and applying Base Shear **limits** 

$$V = \frac{C_v I}{RT} W$$

The calculated value of "V" should be within the following limits

$$V_{min} = 0.11C_a IW$$

$$V_{max} = \frac{2.5C_aI}{R}W$$

In addition, for seismic zone 4, the total base shear shall also not be less than;  $V = (0.8ZN_vI/R)W$ 





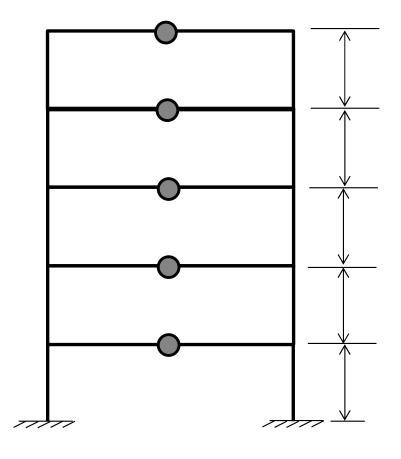
### Step 7: Vertical Distribution of Base Shear

 As per section 5.30.5 of BCP SP 2007, The lateral force at a particular story level x of the structure is given as:

$$F_{\chi} = (V - F_t) \frac{w_{\chi} h_{\chi}}{\sum_{i=1}^{i=n} (W_i h_i)}$$

#### Where;

- n = Number of stories
- $F_t = 0.07 \text{TV} \le 0.25 V$  (may be considered as zero where  $T \le 0.7 sec$ )


 $F_t$  is an additional concentrated force that is applied to the top level (i.e., the roof) in addition to the  $F_x$  force at that level.



#### **Problem Statement**

- A five-story reinforced concrete residential building as shown in figure on the next slide, is required to be designed as Special Moment-Resisting Frame (SMRF) System. The structure is situated in Abbottabad, KP. It has been found from the geotechnical investigation that the soil at the location is class  $S_D$ .
  - a. Calculate the base shear using static later force procedure
  - **b. Determine** joint forces at each story level







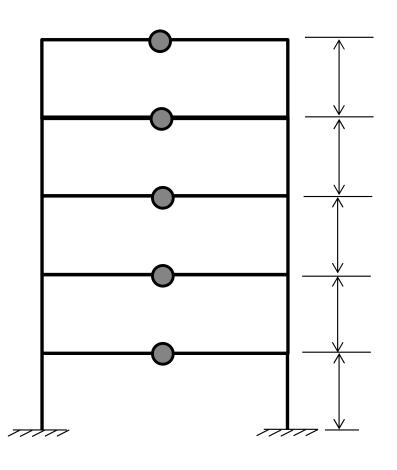
#### Solution

#### Given Data

Structural system: SMRF (concrete)

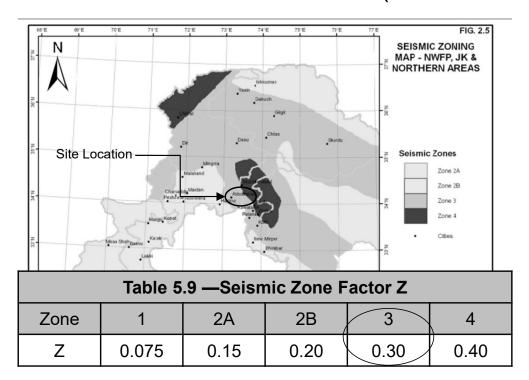
Occupancy: Residential

Site: Abbottabad, KP


Soil Profile Type: S<sub>D</sub>

Number of stories: 5

Story height: 12ft each


### Required Data

- a. Base Shear V
- b. Story Forces, F<sub>x</sub>





- Step 1: Site Specific Details
- Abbottabad falls in Zone 3 (From Seismic Zoning Map).
- Seismic Zone factor "Z" for zone 3 is 0.3 (From Table 5.9)





- > Step 2: Selection of Seismic Coefficients ( $C_a$  and  $C_v$ )
- Knowing Soil profile Type and Seismic zone factor, the values of  $C_a$  and  $C_v$  can be picked up from the relevant tables.

| Table 5.16 —Seismic Coefficients $\mathcal{C}_a$ |                        |          |          |         |                            |  |  |
|--------------------------------------------------|------------------------|----------|----------|---------|----------------------------|--|--|
| Soil Profile Type                                | Seismic Zone Factor, Z |          |          |         |                            |  |  |
|                                                  | Z = 0.075              | Z = 0.15 | Z = 0.20 | Z = 0.3 | Z = 0.4                    |  |  |
| $S_A$                                            | 0.06                   | 0.12     | 0.16     | 0.24    | 0.32 <i>N</i> <sub>a</sub> |  |  |
| $S_B$                                            | 80.0                   | 0.15     | 0.20     | 0.30    | 0.40 <i>N</i> <sub>a</sub> |  |  |
| $S_C$                                            | 0.09                   | 0.18     | 0.24     | 0.33    | 0.40 <i>N</i> <sub>a</sub> |  |  |
| $S_D$                                            | 0.12                   | 0.22     | 0.28     | 0.36    | 0.44 <i>N</i> <sub>a</sub> |  |  |
| $S_E$                                            | 0.19                   | 0.30     | 0.34     | 0.36    | 0.36 <i>N</i> <sub>a</sub> |  |  |
| $S_F$                                            | See Footnote 1         |          |          |         |                            |  |  |



- > Step 2: Selection of Seismic Coefficients ( $C_a$  and  $C_v$ )
- Knowing Soil profile Type and Seismic zone factor, the values of  $C_a$  and  $C_v$  can be picked up from the relevant tables.

| Table 5.17 —Seismic Coefficients $\mathcal{C}_v$ |                        |          |          |         |                            |  |  |
|--------------------------------------------------|------------------------|----------|----------|---------|----------------------------|--|--|
| Soil Profile Type                                | Seismic Zone Factor, Z |          |          |         |                            |  |  |
|                                                  | Z = 0.075              | Z = 0.15 | Z = 0.20 | Z = 0.3 | Z = 0.4                    |  |  |
| $S_A$                                            | 0.06                   | 0.12     | 0.16     | 0.24    | $0.32N_{v}$                |  |  |
| $S_B$                                            | 0.08                   | 0.15     | 0.20     | 0.80    | $0.40N_{v}$                |  |  |
| $S_C$                                            | 0.13                   | 0.25     | 0.32     | 0.45    | $0.56N_{v}$                |  |  |
| $S_D$                                            | 0.18                   | 0.32     | 0.40     | 0.54    | 0.64 <i>N</i> <sub>v</sub> |  |  |
| $S_E$                                            | 0.26                   | 0.50     | 0.64     | 0.84    | 0.96 <i>N<sub>v</sub></i>  |  |  |
| $S_F$                                            | See Footnote 1         |          |          |         |                            |  |  |



- > Step 3: Selection of Seismic Importance Factor (I)
- The occupancy of the given building is residential which comes under Standard Occupancy structures category.

| Table 5.10 — Occupancy Category                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Occupancy Category Occupancy or Function of Structure |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |  |
| Special Occupancy<br>Category                         | Group A, Divisions 1, 2 and 2.1 Occupancies  Buildings housing Group E, Divisions 1 and 3 Occupancies with a capacity greater than 300 students  Buildings housing Group B Occupancies used for college or adult education with a capacity greater than 500 students  Group I, Divisions 1 and 2 Occupancies with 50 or more resident incapacitated patients, but not included in Category 1  Group I, Division 3 Occupancies  All structures with an occupancy greater than 5,000 persons  Structures and equipment in power-generating stations, and other public utility facilities not included in Category 1 or Category 2 above, and required for continued operation |      |  |  |  |
| Standard occupancy structures                         | All structures housing occupancies or having functions not listed in Category 1, 2 or 3 and Group U Occupancy towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 |  |  |  |
| Miscellaneous structures                              | Group U Occupancies except for towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00 |  |  |  |



- > Step 4: Selection of Response Modification Factor (R)
- For SMRF systems composed of concrete, the value of R from Table 5.13 is 8.5.

| Basic Structural System  1. Special moment-resisting frame (SMRF)  a. Steel  b. Concrete  2. Masonry moment-resisting wall frame (MMRWF)  3. Concrete intermediate moment-resisting frame (IMRF)  4. Ordinary moment-resisting frame (OMRF)  a. Steel | Table 5.13 – Structural Systems               |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
| a. Steel b. Concrete 2.Masonry moment-resisting wall frame (MMRWF) 3. Moment-resisting frame system 3. Concrete intermediate moment-resisting frame (IMRF) 4. Ordinary moment-resisting frame (OMRF)                                                  | R                                             |  |  |  |  |  |
| b. Concrete 5.Special truss moment frames of steel (STMF)                                                                                                                                                                                             | 8.5<br>8.5<br>6.5<br>5.5<br>4.5<br>3.5<br>6.5 |  |  |  |  |  |



#### **Solution**

- > Step 5: Determine Structure's Time period
- The value of T can be determined as follows;

$$T = C_t(h_n)^{3/4}$$

#### Here;

 $C_t = 0.030$  for concrete frames

 $h = Total\ height\ of\ structure = 5 \times 12 = 60'$ 

By substituting relevant values, we get

$$T = 0.030(60)^{3/4} = 0.647sec$$



#### **Solution**

> Step 6: Calculate Base shear and apply base shear limits

$$V = \frac{C_v I}{RT} W$$

Here;

$$W = W_1 + W_2 + W_3 + W_4 + W_5 = 800 + 800 + 800 + 800 + 700$$
$$= 3900 \ kips$$

Substituting values and solving gives;

$$V = \frac{0.54 \times 1}{8.5 \times 0.647} \times (3900) = 382.94 \, kips$$



#### **Solution**

### Step 6: Calculate Base shear and apply base shear limits

Applying base shear limits;

$$V_{min} = 0.11C_a IW = 0.11(0.36)(1)(3900) = 154.44 kips$$

And;

$$V_{max} = \frac{2.5C_aI}{R}W = \frac{2.5 \times 0.36 \times 1 \times 3900}{8.5} = 412.94kips$$

$$V_{min} < V < V_{max} \rightarrow OK!$$

Therefore;

$$V = 382.94kips$$

[ This is the required answer for part (a) ]



#### **Solution**

### Step 7: Vertical Distribution of Base shear/ Story forces

The joint force  $F_x$  at level x is given by

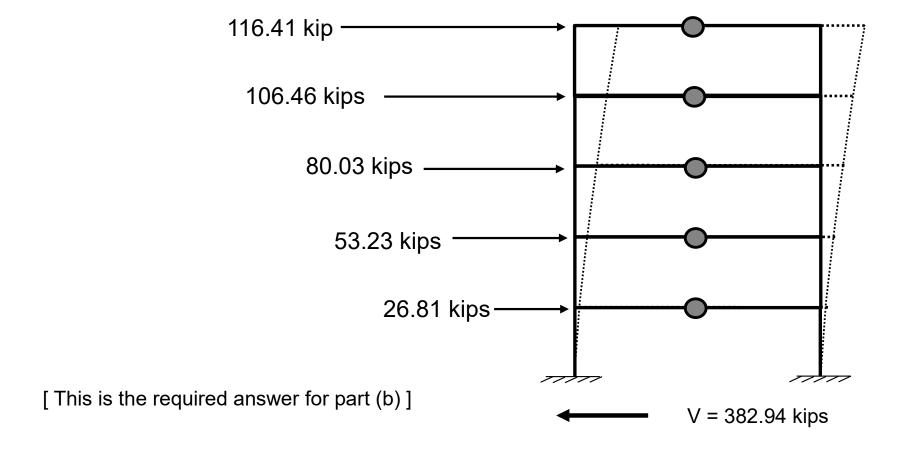
$$F_{\chi} = (V - F_t) \frac{w_{\chi} h_{\chi}}{\sum_{i=1}^{i=n} (W_i h_i)}$$

Since value of T = 0.647 < 0.7, therefore the value of  $F_t = 0$ 

Using the above equation, the story forces have been calculated and tabulated on the next slide.



### **Solution**


> Step 7: Vertical Distribution of Base shear/ Story forces

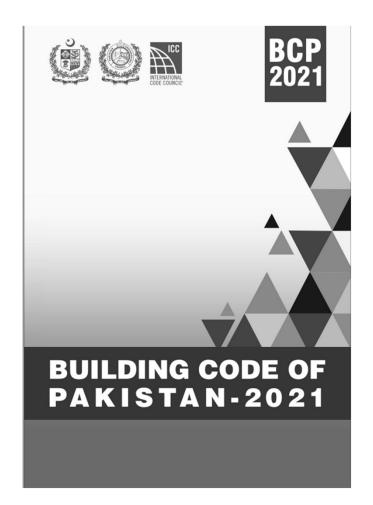
| Vertical Distribution of Base Shear |               |                  |           |                                      |                       |                                                        |
|-------------------------------------|---------------|------------------|-----------|--------------------------------------|-----------------------|--------------------------------------------------------|
| Levels                              | $h_\chi$ (ft) | $W_x$ (kips)     | $W_x h_x$ | $\frac{W_{x}h_{x}}{\sum W_{i}h_{i}}$ | V<br>(kips)           | $F_{x} = V \frac{W_{x}h_{x}}{\Sigma W_{i}h_{i}}(kips)$ |
| 1                                   | 12            | 800.00           | 9600      | 0.070                                | 382.94                | 26.81                                                  |
| 2                                   | 24            | 800.00           | 19200     | 0.139                                | 382.94                | 53.23                                                  |
| 3                                   | 36            | 800.00           | 28800     | 0.209                                | 382.94                | 80.03                                                  |
| 4                                   | 48            | 800.00           | 38400     | 0.278                                | 382.94                | 106.46                                                 |
| 5                                   | 60            | 700.00           | 42000     | 0.304                                | 382.94                | 116.41                                                 |
|                                     |               | $\sum W_i h_i =$ | 138000    | Check:                               | $\sum F_{\chi} = V$ ; | $382.94 = 382.94 \to OK!$                              |



### **Solution**

> Step 7: Vertical Distribution of Base shear/ Story forces




Prof. Dr. Qaisar Ali



## **Introduction to BCP 2021**

#### ☐ BCP 2021

- The Building Code of Pakistan 2021 (BCP 2021), issued in 2022, adopts the International Building Code (IBC 2021) except for seismic maps.
- BCP 2021 integrates results from a recently updated probabilistic seismic hazard analysis (PSHA) carried out with cutting-edge methodologies and the latest data sources available.

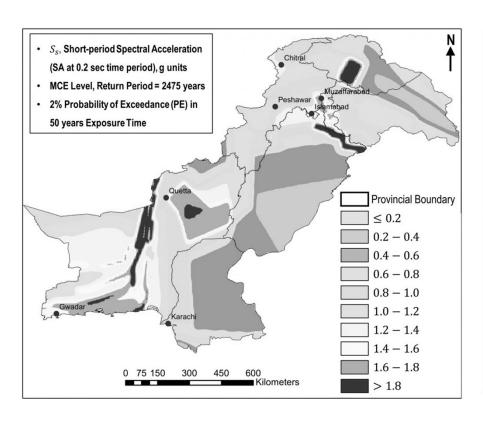


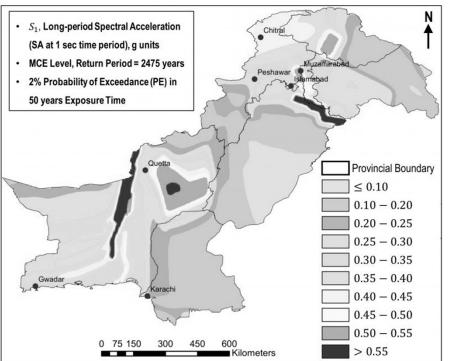


### □ Seismic Loading Criteria in BCP 2021

- In BCP 2021, the seismic analysis is based on the Maximum Considered Earthquake (MCE), which is a very rare type of earthquake with a 2% probability of exceedance in 50 years (return period of 2475 years).
- In contrast to BCP-SP 2007, which relied on a singular Peak Ground Acceleration (PGA) across all time period values, BCP-2021 introduces two distinct spectral accelerations at specified time periods.
  - Short Period Spectral Acceleration ( $S_s$ )  $\rightarrow T = 0.2$  sec
  - Long Period spectral Acceleration ( $S_1$ )  $\rightarrow T = 1.0$  sec




### Seismic Loading Criteria in BCP 2021


- The parameters S<sub>s</sub> and S<sub>1</sub> values are selected from the relevant Seismic hazard map of country.
- For Pakistan, these values are provided in figures 1613.2.1(1) and 1613.2.1(2) of BCP-2021 as shown next.



#### □ Seismic Loading Criteria in BCP 2021

#### Seismic Map of Pakistan







### □ Seismic Loading Criteria in BCP 2021

#### Adjusted MCE Level Spectral Acceleration Parameters

- It should be noted that the  $S_s$  and  $S_1$  correspond to MCE level, excluding local site conditions.
- To account for the local site effects, the parameters shall be adjusted as follows;

$$S_{MS} = F_a \times S_s$$

$$S_{M1} = F_v \times S_1$$

Where:

 $F_a$  and  $F_v$  which are site coefficients provided in Tables 1613.2.2(1) and 1613.2.2(2) of BCP-2021 (shown next).



- □ Seismic Loading Criteria in BCP 2021
  - Adjusted MCE Level Spectral Acceleration Parameters
    - Site Coefficients F<sub>a</sub> and F<sub>v</sub>

**TABLE 1613.2.3(1)** VALUES OF SITE COEFFICIENT  $F_a^a$ 

| SITE CLASS | MAPPED RISK TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE_R) SPECTRAL RESPONSE ACCELERATION PARAMETER AT SHORT PERIOD |              |              |              |              |               |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|---------------|--|--|--|--|
|            | $S_s \le 0.25$                                                                                                      | $S_s = 0.50$ | $S_s = 0.75$ | $S_s = 1.00$ | $S_s = 1.25$ | $S_s \ge 1.5$ |  |  |  |  |
| A          | 0.8                                                                                                                 | 0.8          | 0.8          | 0.8          | 0.8          | 0.8           |  |  |  |  |
| В          | 0.9                                                                                                                 | 0.9          | 0.9          | 0.9          | 0.9          | 0.9           |  |  |  |  |
| С          | 1.3                                                                                                                 | 1.3          | 1.2          | 1.2          | 1.2          | 1.2           |  |  |  |  |
| D          | 1.6                                                                                                                 | 1.4          | 1.2          | 1.1          | 1.0          | 1.0           |  |  |  |  |
| Е          | 2.4                                                                                                                 | 1.7          | 1.3          | Note b       | Note b       | Note b        |  |  |  |  |
| F          | Note b                                                                                                              | Note b       | Note b       | Note b       | Note b       | Note b        |  |  |  |  |



- □ Seismic Loading Criteria in BCP 2021
  - Adjusted MCE Level Spectral Acceleration Parameters
    - Site Coefficients F<sub>a</sub> and F<sub>v</sub>

**TABLE 1613.2.3(2)** VALUES OF SITE COEFFICIENT  $F_V^a$ 

| SITE CLASS | MAPPED RISK TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCER) SPECTRAL RESPONSE ACCELERATION PARAMETER AT 1-SECOND PERIOD |             |             |                  |             |               |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------|-------------|---------------|--|--|--|--|
|            | $S_1 \le 0.1$                                                                                                         | $S_1 = 0.2$ | $S_1 = 0.3$ | $S_1 = 0.4$      | $S_1 = 0.5$ | $S_1 \ge 0.6$ |  |  |  |  |
| A          | 0.8                                                                                                                   | 0.8         | 0.8         | 0.8              | 0.8         | 0.8           |  |  |  |  |
| В          | 0.8                                                                                                                   | 0.8         | 0.8         | 0.8              | 0.8         | 0.8           |  |  |  |  |
| С          | 1.5                                                                                                                   | 1.5         | 1.5         | 1.5              | 1.5         | 1.4           |  |  |  |  |
| D          | 2.4                                                                                                                   | 2.2°        | 2.0°        | 1.9 <sup>c</sup> | 1.8°        | 1.7°          |  |  |  |  |
| Е          | 4.2                                                                                                                   | 3.3°        | 2.8°        | 2.4°             | 2.2°        | 2.0°          |  |  |  |  |
| F          | Note b                                                                                                                | Note b      | Note b      | Note b           | Note b      | Note b        |  |  |  |  |



### □ Seismic Loading Criteria in BCP 2021

#### Design Response Spectral Acceleration Parameters

• The five-percent damped design response spectral acceleration at short-period  $S_{DS}$  and at long period  $S_{D1}$  shall be determined from the following equations:

$$S_{DS} = \frac{2}{3} S_{MS}$$
 and  $S_{D1} = \frac{2}{3} S_{M1}$ 

Hence,

$$S_{DS} = \frac{2}{3}S_S \times F_a$$

$$S_{D1} = \frac{2}{3}S_1 \times F_v$$



- □ Seismic Loading Criteria in BCP 2021
  - Seismic Design Category (SDC)
    - Contrary to BCP SP 2007, which used seismic zoning (from zone 1 to zone 4) to designate earthquake severity, the revised code now categorizes severity based on design category.
    - The Seismic Design Category (SDC) is allocated to a structure depending on its occupancy category and the intensity of the design earthquake ground motion at the site.
    - SDCs A, B, and C indicate lower hazard sites, whereas D, E, and F signify regions facing higher seismic risks.



- □ Seismic Loading Criteria in BCP 2021
  - Seismic Design Category (SDC)
    - SDC is determined using Tables 1613.2.5(1) and 1613.2.5(2) of BCP-2021 (shown next) based on the design response spectral acceleration parameters (S<sub>DS</sub> and S<sub>s</sub>) and the risk category of the structure.
    - The risk category for buildings and other structures can be obtained Table 1604.5 of BCP-2021.



- ☐ Seismic Loading Criteria in BCP 2021
  - Seismic Design Category (SDC)

**TABLE 1613.2.5(1)** 

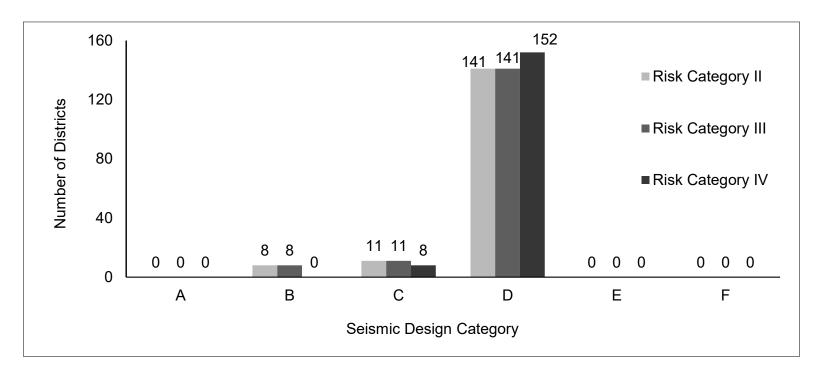
#### SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

| VALUE OF $S_{DS}$           | RISK CATEGORY |   |    |  |  |  |  |
|-----------------------------|---------------|---|----|--|--|--|--|
|                             | I or II       | Ш | IV |  |  |  |  |
| S <sub>DS</sub> < 0.167g    | A             | A | A  |  |  |  |  |
| $0.167g \le S_{DS} < 0.33g$ | В             | В | С  |  |  |  |  |
| $0.33g \le S_{DS} < 0.50g$  | С             | С | D  |  |  |  |  |
| $0.50g \le S_{DS}$          | D             | D | D  |  |  |  |  |

#### TABLE 1613.2.5(2) SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

| VALUE OF S <sub>DI</sub>     | RISK CATEGORY |     |    |  |  |  |  |
|------------------------------|---------------|-----|----|--|--|--|--|
|                              | I or II       | III | IV |  |  |  |  |
| $S_{Dl} < 0.067g$            | A             | A   | A  |  |  |  |  |
| $0.067g \le S_{Dl} < 0.133g$ | В             | В   | С  |  |  |  |  |
| $0.133g \le S_{DI} < 0.20g$  | С             | С   | D  |  |  |  |  |
| $0.20g \le S_{DI}$           | D             | D   | D  |  |  |  |  |

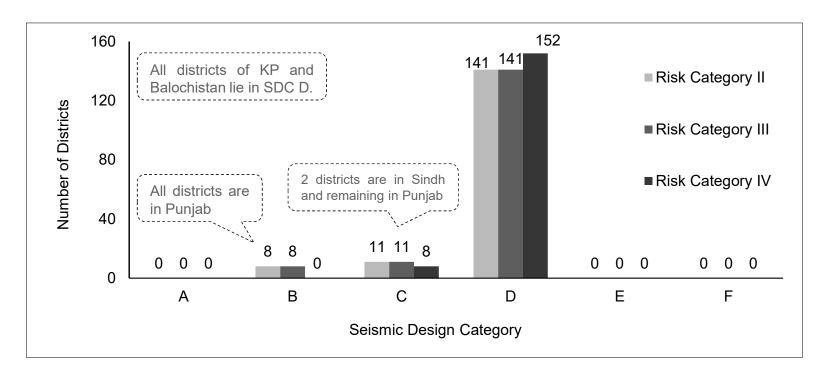



- ☐ Seismic Loading Criteria in BCP 2021
  - Seismic Design Category (SDC)
  - Seismic design categories of some districts of Pakistan for site class
     D and Seismic Risk Category III are provided below.

| District  |       | RSA<br>neters | Site Coe | fficients |          | ed MCE<br>ameters | DBE Parameters |          | SDC |
|-----------|-------|---------------|----------|-----------|----------|-------------------|----------------|----------|-----|
|           | $S_s$ | $S_1$         | $F_a$    | $F_{v}$   | $S_{MS}$ | $S_{M1}$          | $S_{DS}$       | $S_{D1}$ |     |
| Peshawar  | 0.84  | 0.29          | 1.164    | 2.02      | 0.98     | 0.59              | 0.65           | 0.39     | D   |
| Islamabad | 1.3   | 0.38          | 1        | 1.92      | 1.30     | 0.73              | 0.87           | 0.49     | D   |
| Mansehra  | 1.17  | 0.36          | 1.032    | 1.94      | 1.21     | 0.70              | 0.80           | 0.47     | D   |
| Swat      | 1.06  | 0.40          | 1.076    | 1.9       | 1.14     | 0.76              | 0.76           | 0.51     | D   |
| Hangu     | 0.76  | 0.21          | 1.196    | 2.18      | 0.91     | 0.46              | 0.61           | 0.31     | D   |
| Mardan    | 0.76  | 0.32          | 1.196    | 1.98      | 0.91     | 0.63              | 0.61           | 0.42     | D   |



#### □ Seismic Loading Criteria in BCP 2021


- Seismic Design Category (SDC)
- The plot of districts in Pakistan versus seismic design categories (SDC) for different risk categories, considering site class as D, is shown in Figure below.





#### Seismic Loading Criteria in BCP 2021

- Seismic Design Category (SDC)
- The plot shows that out of 160 districts, no districts lie in SDC A, E and F. Only 8 districts fall in SDC B, and the majority are classified under SDC D.





#### □ Determination of Lateral Force

- Equivalent Lateral Force Procedure
  - BCP 2021 refers to ASCE 7-16 Section 12.8 for determination of total design base shear force in a given direction.

$$V = C_S W$$

Where;

$$C_s$$
 = seismic response coefficient =  $\frac{S_{DS}I_e}{R}$ 

- $S_{DS}$  = design response spectral acceleration parameter at short period
- $I_e$  = seismic importance factor, obtained from Table (1.5-2 of ASCE 7)
- R = response modification factor, obtained from Table (12-2.1 of ASCE 7)

W =effective seismic weight



- **Determination of Lateral Force** 
  - **Equivalent Lateral Force Procedure** 
    - **Seismic Coefficient Limits**

The value of  $C_s$  shall not exceed  $C_{s,max}$ 

$$C_{s,max} = \begin{cases} \frac{S_{D1}I_e}{RT} & \text{for } T \leq T_L \\ \frac{S_{D1}I_eT_L}{RT^2} & \text{for } T > T_L \end{cases}$$

Where:

 $S_{D1}$  = design response spectral acceleration parameter at long period

T = structure's period (defined next)

 $T_1$  = long-period transition period(s) determined from seismic maps (typically  $T_1$  = 8 sec)

(T<sub>1</sub> marks the transition from the constant-velocity segment to the constant displacement segment of the design response spectrum)



- **Determination of Lateral Force** 
  - Equivalent Lateral Force Procedure
    - **Seismic Coefficient Limits**

Similarly, the value of  $C_s$  shall not be less than  $C_{s,min}$ 

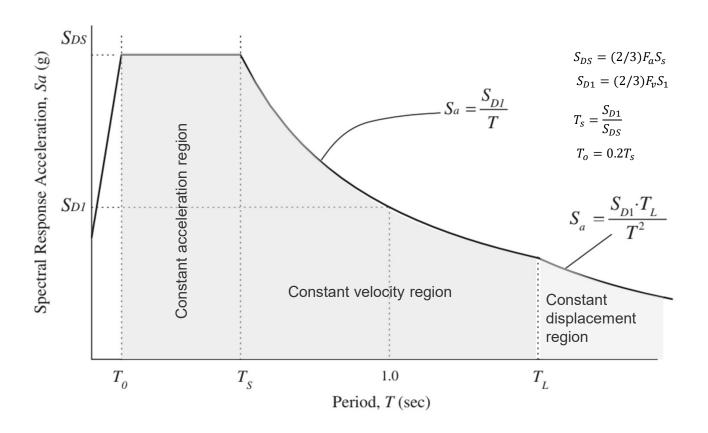
$$C_{s,min} = 0.044 S_{DS} I_e \ge 0.01$$

In addition, for structures located where  $S_1$  is equal to or greater than 0.6g,  $C_s$  shall not be less than

$$C_{s,min} = \frac{0.5S_1I_e}{R}$$



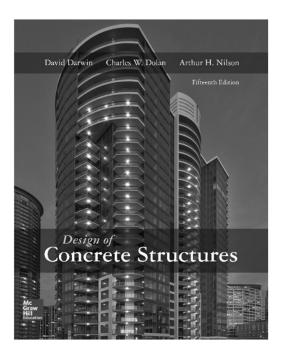
- □ Determination of Lateral Force
  - Equivalent Lateral Force Procedure
    - Structure's Period
    - The approximate fundamental period ( $T_a$ ), in seconds, shall be determined in accordance with ASCE 7, 12.8.2.1.

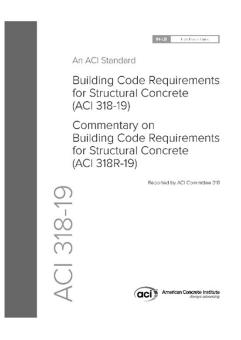

$$T_a = C_t(h_n)^x$$

Where;

- $h_n$  = structural height (from base level to top)
- $C_t = 0.028$  and x = 0.8 (for steel moment-resisting frames)
- $C_t = 0.016$  and x = 0.9 (for concrete moment-resisting frames)




- **Determination of Lateral Force** 
  - **Dynamic Lateral Force Procedure** 
    - **Response Spectrum Analysis**






### References

- Design of Concrete Structures 14th / 15th edition by Nilson, Darwin and Dolan.
- Building Code Requirements for Structural Concrete (ACI 318-19)
- Building Code of Pakistan Seismic Provisions 2007 / UBC-97 Volume 2









|                  | Table 2.2 — Seismic Zones of Tehsils of Pakistan |                        |                 |                        |                 |  |  |  |  |
|------------------|--------------------------------------------------|------------------------|-----------------|------------------------|-----------------|--|--|--|--|
| Tehsil           | Seismic<br>Zone                                  | Tehsil                 | Seismic<br>Zone | Tehsil                 | Seismic<br>Zone |  |  |  |  |
| Punjab           | •                                                |                        |                 |                        |                 |  |  |  |  |
| Attock           | 2B                                               | Shorkot                | 2A              | Multan City            | 2A              |  |  |  |  |
| Hassanabdal      | 2B                                               | Toba Tek Singh         | 2A              | Multan Saddar          | 2A              |  |  |  |  |
| Fateh Jang       | 2B                                               | Kamalia                | 2A              | Shujabad               | 2A              |  |  |  |  |
| Pindi Gheb       | 2B                                               | Gojra                  | 2A              | Jalalpur Pirwala       | 2A              |  |  |  |  |
| Jand             | 2B                                               | <b>Gujranwala</b> City | 2A              | Lodhran                | 2A              |  |  |  |  |
| Rawalpindi       | 2B                                               | Wazirabad              | 2A              | Kahror Pacca           | 2A              |  |  |  |  |
| Taxila           | 2B                                               | Gujranwala Saddar      | 2A              | Dunyapur               | 2A              |  |  |  |  |
| Kahuta           | 2B                                               | Nowshera Virkan        | 2A              | Khanewal               | 2A              |  |  |  |  |
| Murree           | 3                                                | Kamoki                 | 2A              | Jehanian               | 2A              |  |  |  |  |
| Kotli Sattian    | 3                                                | Hafizabad              | 2A              | Main Channu            | 2A              |  |  |  |  |
| Gujar Khan       | 2B                                               | Pindi Bhattian         | 2A              | Kabirwala              | 2A              |  |  |  |  |
| Jhelum           | 2B                                               | Gujrat                 | 2B              | Dera Ghazi Khan        | 2A              |  |  |  |  |
| Sohawa           | 2B                                               | Kharian                | 2B              | Taunsa                 | 2B              |  |  |  |  |
| Pind Dadan Khan  | 2B                                               | Sarai Alamgir          | 2B              | De-Ex.Area of D.G.Khan | 2B              |  |  |  |  |
| Dina             | 2B                                               | Mandi Bahauddin        | 2B              | Rajanpur               | 2A              |  |  |  |  |
| Chakwal          | 2B                                               | Malikwal               | 2B              | Rojhan                 | 2A              |  |  |  |  |
| Talagang         | 2B                                               | Phalia                 | 2A              | Jampur                 | 2A              |  |  |  |  |
| Choa Saidan Shah | 2B                                               | Sialkot                | 2B              | De-Ex.Area of Rajanpur | 2B              |  |  |  |  |



| Tehsil            | Seismic<br>Zone | Tehsil        | Seismic<br>Zone | Tehsil            | Seismic<br>Zone |
|-------------------|-----------------|---------------|-----------------|-------------------|-----------------|
| Sargodha          | 2A              | Daska         | 2B              | Leiah             | 2A              |
| Sillanwali        | 2A              | Pasrur        | 2B              | Chaubara          | 2A              |
| Bhalwal           | 2A              | Narowal       | 2B              | Karor Lal Esan    | 2A              |
| Shahpur           | 2B              | Shakargarh    | 2B              | Muzaffargarh      | 2A              |
| Sahiwal           | 2A              | Lahore City   | 2A              | Alipur            | 2A              |
| Kot Momin         | 2A              | Lahore Cantt  | 2A              | Jatoi             | 2A              |
| Bhakkar           | 2A              | Kasur         | 2A              | Kot Addu          | 2A              |
| Kalur Kot         | 2B              | Chunian       | 2A              | Bahawalpur        | 2A              |
| Mankera           | 2A              | Pattoki       | 2A              | Hasilpur          | 2A              |
| Darya Khan        | 2A              | Okara         | 2A              | Yazman            | 2A              |
| Khushab           | 2B              | Depalpur      | 2A              | Ahmadpur East     | 2A              |
| Nurpur            | 2A              | Renala Khurd  | 2A              | Khairpur Tamewali | 2A              |
| Mianwali          | 2B              | Sheikhupura   | 2A              | Bahawalnagar      | 2A              |
| Isa Khel          | 2B              | Nankana Sahib | 2A              | Minchinabad       | 2A              |
| Piplan            | 2B              | Ferozwala     | 2A              | Fort Abbas        | 1               |
| Faisalabad City   | 2A              | Safdarabad    | 2A              | Haroonabad        | 2A              |
| Faisalabad Saddar | 2A              | Vehari        | 2A              | Chishtian         | 2A              |
| Chak Jhumra       | 2A              | Burewala      | 2A              | Rahim Yar Khan    | 2A              |
| Sammundri         | 2A              | Mailsi        | 2A              | Khanpur           | 2A              |
| Jaranwala         | 2A              | Sahiwal       | 2A              | Liaquatpur        | 2A              |
| Tandlianwala      | 2A              | Chichawatni   | 2A              | Sadiqabad         | 2A              |
| Jhang             | 2A              | Pakpattan     | 2A              |                   |                 |
| Chiniot           | 2A              | Arifwala      | 2A              |                   |                 |



| Tehsil               | Seismic Zone | Tehsil              | Seismic<br>Zone | Tehsil          | Seismic<br>Zone |
|----------------------|--------------|---------------------|-----------------|-----------------|-----------------|
| Balochistan          |              |                     | •               |                 |                 |
| Quetta               | 3            | Dera Bugti          | 3               | Aranji (S/T)    | 2B              |
| Panjpai (S/T)        | 3            | Sangsillah (S/T)    | 3               | Awaran          | 2B              |
| Pishin               | 4            | Sui                 | 3               | Mshki (S/T)     | 3               |
| Hurramzai (S/T)      | 4            | Loti                | 3               | Jhal Jao        | 3               |
| Barshore (S/T)       | 3            | Phelawagh           | 3               | Kharan          | 3               |
| Karezat (S/T)        | 4            | Malam (S/T)         | 3               | Besima (S/T)    | 2B              |
| Bostan (S/T)         | 4            | Baiker (S/T)        | 3               | Nag (S/T)       | 2B              |
| Killa Abdullah       | 3            | Pir Koh (S/T)       | 3               | Wasuk (S/T)     | 2B              |
| Gulistan (S/T)       | 3            | Jaffarabad/Jhat Pat | 2B              | Mashkhel (S/T)  | 2A              |
| Chaman               | 3            | Panhwar (S/T)       | 2B              | Bela            | 2B              |
| Dobandi (S/T)        | 3            | Usta Mohammad       | 2B              | Uthal           | 2B              |
| Chagai (S/T)         | 2A           | Gandaka (S/T)       | 2B              | Lakhra          | 2B              |
| Dalbandin            | 2A           | Nasirabad/Chattar   | 3               | Liari (S/T)     | 2B              |
| Nushki               | 4            | Tamboo              | 3               | Hub             | 2B              |
| Nokundi S/T          | 2A           | D.M.Jamali          | 2B              | Gadani (S/T)    | 2B              |
| Taftan               | 2A           | Bolan/Dhadar        | 3               | Sonmiani/Winder | 2B              |
| <b>Loralai</b> /Bori | 3            | Bhag                | 3               | Dureji          | 2B              |
| Mekhtar (S/T)        | 3            | Balanari (S/T)      | 3               | Kanraj          | 2B              |
| Duki                 | 3            | Sani (S/T)          | 3               | Kech            | 2B              |
| Barkhan              | 3            | Khattan (S/T)       | 3               | Buleda (S/T)    | 2B              |
| Musakhel             | 3            | Mach                | 3               | Zamuran (S/T)   | 2B              |



| Tehsil          | Seismic<br>Zone | Tehsil            | Seismic<br>Zone | Tehsil         | Seismic<br>Zone |
|-----------------|-----------------|-------------------|-----------------|----------------|-----------------|
| Kingri (S/T)    | 3               | Kachhi/Gandawa    | 2B              | Hoshab (S/T)   | 2B              |
| Killa Saifullah | 3               | Mirpur (S/T)      | 2B              | Balnigor (S/T) | 2B              |
| Muslim Bagh     | 4               | Jhal Magsi        | 2B              | Dasht (S/T)    | 3               |
| Loiband (S/T)   | 3               | Kalat             | 3               | Tump           | 2B              |
| Baddini (S/T)   | 3               | Mangochar (S/T)   | 3               | Mand (S/T)     | 2B              |
| Zhob            | 3               | Johan (S/T)       | 3               | Gwadar         | 3               |
| Sambaza (S/T)   | 3               | Surab             | 2B              | Jiwani         | 2B              |
| Sherani (S/T)   | 3               | Gazg (S/T)        | 3               | Suntsar (S/T)  | 2B              |
| Qamar Din Karez | 2B              | Mastung           | 3               | Pasni          | 3               |
| Ashwat (S/T)    | 2B              | Kirdgap (S/T)     | 3               | Ormara         | 3               |
| Sibi            | 3               | Dasht             | 3               | Panjgur        | 2B              |
| Kutmandai (S/T) | 3               | Khad Koocha (S/T) | 3               | Parome (S/T)   | 2B              |
| Sangan (S/T)    | 3               | Khuzdar           | 2B              | Gichk (S/T)    | 2B              |
| Lehri           | 3               | Zehri             | 2B              | Gowargo        | 2A              |
| Ziarat          | 4               | Moola (S/T)       | 2B              |                |                 |
| Harnai          | 3               | Karakh (S/T)      | 2B              |                |                 |
| Sinjawi (S/T)   | 4               | Nal (S/T)         | 3               |                |                 |
| Kohllu          | 3               | Wadh (S/T)        | 2B              |                |                 |
| Kahan           | 3               | Ornach (S/T)      | 3               |                |                 |
| Mawand          | 3               | Saroona (S/T)     | 2B              |                |                 |



| Tehsil            | Seismic<br>Zone | Tehsil           | Seismic<br>Zone | Tehsil                 | Seismic<br>Zone |
|-------------------|-----------------|------------------|-----------------|------------------------|-----------------|
| NWFP              |                 |                  |                 |                        |                 |
| Chitral           | 4               | Swabi            | 2B              | Kurram                 |                 |
| Drosh             | 3               | Lahore           | 2B              | Lower Kurram           | 2B              |
| Lutkoh            | 3               | Charsadda        | 2B              | Upper Kurram           | 2B              |
| Mastuj            | 3               | Tangi            | 3               | Kurram F.R.            | 2B              |
| Turkoh            | 3               | Peshawar         | 2B              | Orakzai                |                 |
| Mulkoh            | 3               | Nowshera         | 2B              | Central <b>Orakzai</b> | 2B              |
| Dir               | 3               | Kohat            | 2B              | Lower Orkzai           | 2B              |
| Barawal           | 3               | Lachi            | 2B              | Upper Orkzai           | 2B              |
| Kohistan          | 3               | Hangu            | 2B              | Ismailzai              | 2B              |
| Wari              | 3               | Karak            | 2B              | South Waziristan       |                 |
| Khall             | 3               | Banda Daud Shah  | 2B              | Ladha                  | 2B              |
| Temergara         | 3               | Takht-E-Nasrati  | 2B              | Makin (Charlai)        | 2B              |
| Balambat          | 3               | Bannu            | 2B              | Sararogha              | 2B              |
| Lalqila           | 3               | Lakki Marwat     | 2B              | Sarwekai               | 2B              |
| Adenzai           | 3               | Dera Ismail Khan | 2A              | Tiarza                 | 2B              |
| Munda             | 3               | Daraban          | 3               | Wana                   | 2B              |
| Samarbagh (Barwa) | 3               | Paharpur         | 2B              | Toi Khullah            | 2B              |
| Swat              |                 | Kulachi          | 2B              | Birmal                 | 2B              |
| Matta             | 3               | Tank             | 2B              | North Waziristan       |                 |
| Shangla/Alpuri    | 3               | Bajaur           |                 | Datta Khel             | 2B              |



| Tehsil                           | Seismic<br>Zone | Tehsil               | Seismic<br>Zone | Tehsil      | Seismic<br>Zone |
|----------------------------------|-----------------|----------------------|-----------------|-------------|-----------------|
| Besham                           | 3               | Barang               | 3               | Dossali     | 2B              |
| Chakesar                         | 3               | Charmang             | 3               | Garyum      | 2B              |
| Martung                          | 3               | Khar Bajaur          | 3               | Ghulam Khan | 2B              |
| Puran                            | 2B              | Mamund               | 3               | Mir Ali     | 2B              |
| Buner/Daggar                     | 2B              | Salarzai             | 3               | Miran Shah  | 2B              |
| <b>Malakand/</b> Swat<br>Ranizai | 3               | Utmankhel (Qzafi)    | 3               | Razmak      | 2B              |
| Sam Ranizai                      | 2B              | Nawagai              | 3               | Spinwam     | 2B              |
| Dassu                            | 3               | Mohmand              |                 | Shewa       | 2B              |
| Pattan                           | 3               | Halimzai             | 3               |             |                 |
| Palas                            | 3               | Pindiali             | 3               |             |                 |
| Mansehra                         | 3               | Safi                 | 3               |             |                 |
| Balakot                          | 4               | Upper Mohmand        | 3               |             |                 |
| Oghi                             | 2B              | Utman<br>Khel(Ambar) | 3               |             |                 |
| T.A.Adj.Mansehra<br>Distt        | 3               | Yake Ghund           | 3               |             |                 |
| Batagram                         | 3               | Pringhar             | 3               |             |                 |
| Allai                            | 3               | Khyber               |                 |             |                 |
| Abbottabad                       | 3               | Bara                 | 2B              |             |                 |
| Haripur                          | 2B              | Jamurd               | 2B              |             |                 |
| Ghazi                            | 2B              | Landi Kotal          | 3               |             |                 |
| Mardan                           | 2B              | Mula Ghori           | 3               |             |                 |
| Takht Bhai                       | 2B              |                      |                 |             |                 |



| Tehsil       | Seismic<br>Zone | Tehsil                  | Seismic<br>Zone | Tehsil             | Seismic<br>Zone |
|--------------|-----------------|-------------------------|-----------------|--------------------|-----------------|
| Sindh        |                 |                         |                 | •                  |                 |
| Jacobabad    | 2A              | Khairpur Nathan<br>Shah | 2B              | Tharparkar/Chachro | 2A              |
| Garhi Khairo | 2A              | Sehwan                  | 2A              | Nagar Parkar       | 2B              |
| Thul         | 2A              | Mehar                   | 2A              | Diplo              | 3               |
| Kandhkot     | 2A              | Johi                    | 2B              | Mithi              | 2B              |
| Kashmor      | 2A              | Kotri                   | 2A              | Karachi East       | 2B              |
| Shikarpur    | 2A              | Thano Bula Khan         | 2A              | Karachi West       | 2B              |
| Khanpur      | 2A              | <b>Hyderabad</b> City   | 2A              | Karachi South      | 2B              |
| Garhi Yasin  | 2A              | Matiari                 | 2A              | Karachi Central    | 2B              |
| Lakhi        | 2A              | Tando Allahyar          | 2A              | Malir              | 2B              |
| Larkana      | 2A              | Hala                    | 2A              |                    |                 |
| Miro Khan    | 2A              | Latifabad               | 2A              | FEDERAL AREA       |                 |
| Rato Dero    | 2A              | Hyderabad               | 2A              | Islamabad          | 2B              |
| Shahdadkot   | 2B              | Qasimabad               | 2A              |                    |                 |
| Dokri        | 2A              | Tando Mohd Khan         | 2A              | AJK                |                 |
| Kambar       | 2B              | Badin                   | 2B              | Bagh               | 4               |
| Warah        | 2A              | Golarchi                | 2A              | Bhimbar            | 2B              |
| Sukkur       | 2A              | Matli                   | 2A              | Hajira             | 4               |
| Rohri        | 2A              | Tando Bagho             | 2B              | Kotli              | 3               |
| Pano Aqil    | 2A              | Talhar                  |                 | Muzaffarabad       | 4               |
| Salehpat     | 2A              | Thatta                  | 2A              | New Mirpur         | 2B              |



| Tehsil              | Seismic<br>Zone | Tehsil         | Seismic<br>Zone | Tehsil           | Seismic<br>Zone |
|---------------------|-----------------|----------------|-----------------|------------------|-----------------|
| Ghotki              | 2A              | Mirpur Sakro   | 2A              | Palandri         | 3               |
| Khangarh            | 2A              | Keti Bunder    | 2A              | Rawalakot        | 3               |
| Mirpur Mathelo      | 2A              | Ghorabari      | 2A              |                  |                 |
| Ubauro              | 2A              | Sujawal        | 2A              | NORTHERN<br>AREA |                 |
| Daharki             | 2A              | Mirpur Bathoro | 2A              | Chilas           | 3               |
| Khairpur            | 2A              | Jati           | 2A              | Dasu             | 3               |
| Kingri              | 2A              | Shah Bunder    | 2A              | Gakuch           | 3               |
| Sobhodero           | 2A              | Kharo Chan     | 2A              | Gilgit           | 3               |
| Gambat              | 2A              | Sanghar        | 2A              | Ishkuman         | 2B              |
| Kot Diji            | 2A              | Sinjhoro       | 2A              | Skardu           | 3               |
| Mirwah              | 2A              | Khipro         | 2A              | Yasin            | 3               |
| Faiz Ganj           | 2A              | Shahdadpur     | 2A              |                  |                 |
| Nara                | 2A              | Jam Nawaz Ali  | 2A              |                  |                 |
| Naushahro<br>Feroze | 2A              | Tando Adam     | 2A              |                  |                 |
| Kandioro            | 2A              | Mirpur Khas    | 2A              |                  |                 |
| Bhiria              | 2A              | Digri          | 2A              |                  |                 |
| Moro                | 2A              | Kot Ghulam Moh | 2A              |                  |                 |
| Nawab Shah          | 2A              | Umerkot        | 2A              |                  |                 |
| Skrand              | 2A              | Samaro         | 2A              |                  |                 |
| Daulatpur           | 2A              | Kunri          | 2A              |                  |                 |
| Dadu                | 2A              | Pithoro        | 2A              |                  |                 |



| RISK CATEGORY | NATURE OF OCCUPANCY                                                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | Buildings and other structures that represent a low hazard to human life in the event of failure, including but not limited to:                                                                                 |
|               | Agricultural facilities, Certain temporary facilities and Minor storage facilities                                                                                                                              |
| II            | Buildings and other structures except those listed in Risk Categories I, III and IV                                                                                                                             |
| Ш             | Buildings and other structures that represent a substantial hazard to human life in the event of failure, including but not limited to:                                                                         |
|               | Buildings and other structures whose primary occupancy is public assembly with an occupant load greater than 300.                                                                                               |
|               | Buildings and other structures containing one or more public assembly spaces, each having an occupant load greater than 300 and a cumulative occupant load of the public assembly spaces of greater than 2,500. |
|               | Buildings and other structures containing Group E or Group I-4 occupancies or combination thereof, with an occupant load greater than 250.                                                                      |
|               | Buildings and other structures containing educational occupancies for students above the 12th grade with an occupant load greater than 500.                                                                     |
|               | Group I-2, Condition 1 occupancies with 50 or more care recipients.                                                                                                                                             |
|               | Group I-2, Condition 2 occupancies not having emergency surgery or emergency treatment facilities.                                                                                                              |
|               | Group I-3 occupancies.                                                                                                                                                                                          |
|               | Any other occupancy with an occupant load greater than 5,000.                                                                                                                                                   |
|               | Power-generating stations, water treatment facilities for potable water, wastewater treatment facilities and other public utility facilities not included in Risk Category IV.                                  |
| -             | Buildings and other structures not included in Risk Category IV containing quantities of toxic or explosive materials that are sufficient to pose a threat to the public if released.                           |
| IV            | Buildings and other structures designated as essential facilities, including but not limited to:                                                                                                                |
|               | Group I-2, Condition 2 occupancies having emergency surgery or emergency treatment facilities.                                                                                                                  |
|               | Ambulatory care facilities having emergency surgery or emergency treatment facilities.                                                                                                                          |
|               | Fire, rescue, ambulance and police stations and emergency vehicle garages                                                                                                                                       |
|               | Designated earthquake, hurricane or other emergency shelters.                                                                                                                                                   |
|               | Designated emergency preparedness, communications and operations centers and other facilities required for emergency response.                                                                                  |
|               | Power-generating stations and other public utility facilities required as emergency backup facilities for Risk Category IV structures.                                                                          |
|               | Buildings and other structures containing quantities of highly toxic materials that are sufficient to pose a threat to the public if released.                                                                  |
|               | Aviation control towers, air traffic control centers and emergency aircraft hangars.                                                                                                                            |
|               | Buildings and other structures having critical national defense functions.                                                                                                                                      |
|               | Water storage facilities and pump structures required to maintain water pressure for fire suppression.                                                                                                          |

